References
- Chen, Y., Bittner, M. L. and Dougherty, E. R. (1999). Issues associated with microarray data analysis and integration, Nature Genetics, 22, 213-216 https://doi.org/10.1038/10265
- DeRisi, JL., Iyer VR. and Brown PO. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale, Science, 278, 680-686 https://doi.org/10.1126/science.278.5338.680
- Dudoit, S., Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 77-87 https://doi.org/10.1198/016214502753479248
- Fleury, G.A., Hero, O., Yoshida, S., Carter, T., Barlow, C. and Swaroop, A. (2002). Pareto analysis for gene filtering in microarray experiments, In Proceedings of the European Signal Processing Conference(EuSIPCO), Toulo- use, France
- Herrero, J., Diaz-Uriate, R. and Dopazo, J. (2003). Gene expression data preprocessing, Bioinformatics, 19, 655-656 https://doi.org/10.1093/bioinformatics/btg040
- Kadota K., Tominaga D., Akiyama Y. and Takahashi K. (2003). Detection outlying samples in microarray data: A critical assessment of the effect of outliers on sample classification, Chem-Bio Informatics Journal, 3, 30-45 https://doi.org/10.1273/cbij.3.30
- de Lichtenberg U., Jensen, L. J., Fausboll, A., Jensen, T. S., Bork, P. and Brunak, S. (2005). Comparison of computational methods for the identification of cell cycle-regulated genes, Bioinformatics, 21, 1164-171 https://doi.org/10.1093/bioinformatics/bti093
- Lindlof, A. and Olsson, B. (2003). Genetic network inference: the effects of preprocessing, BioSystems, 72, 229-239 https://doi.org/10.1016/S0303-2647(03)00164-3
- Liang, Y., Tayo, B., Cai, X. and Kelemen, A. (2005). Differential and trajectory methods for time course gene expression data, Bioinformatics, 21, 3009-3016 https://doi.org/10.1093/bioinformatics/bti465
- Spellman P., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O, Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the Cell, 9, 3273-3297 https://doi.org/10.1091/mbc.9.12.3273
- The Math Works, Inc. (2003). MATLAB/Bioinformatics toolbox, Version 1.0, Natick, MA