Abstract
With a series of unexpected huge losses in the financial markets around the world recently, especially in the insurance market with extreme loss cases such as catastrophes, there is an increasing demand for risk management for extreme loss exposures due to high unpredictability of those risks. For extreme risk management, to make a maximum use of the information concerning the tail part of a loss distribution, EVT(Extreme Value Theory) modelling nay be the best to analyze extreme values. The Extreme Value Theory is widely used in practice and, especially in financal markets, EVT modelling is getting popular to analyBe the effects of extreme risks. This study is to review the significance of the Extreme Value Theory in risk management and, focusing on analyzing insurer's risk capital, extreme risk is measured using the real fire loss data and insurer's specific amount of risk capital is figured out to buffer the extreme risk.
전 세계적으로 금융시장에서는 예측할 수 없는 대형 사건들이 지속적으로 일어나고 있으며, 특히 보험시장의 경우에는 대재해성(catastrophe)손실 등을 포함한 극단적 사건에 대한 예측이 날이 갈수록 어려워지고 있는바 극단적 위험관리에 대한 필요성이 증대되고 있다. 극단적 위험관리에 있어 분포의 꼬리영역만을 분리하여 그 정보를 최대로 이용하는 방법이 필요한데, 이러한 문제들을 해결하기 위해 극단치들의 움직임을 모형화 하는 소위 극단치 이론(Extreme Value Theory: EVT)을 이용하는 것이 요구된다. 극단치 이론은 현재 여러 분야에서 활용되고 있는데, 특히 금융시장에서는 극단적 변화가 미치는 영향을 분석하기 위해서 극단치 이론을 이용한 금융위험분석을 실시하고 있다. 본 연구에서는 위험관리에 있어서 극단치 이론의 중요성을 검토하고 보험사의 위험자본에 초점을 맞추어 손실 발생의 극단적 위험을 측정하고 이에 대비한 위험자본의 적정규모를 측정하여 보았다.