6 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

Phantom Protection Method for Multi-dimensional Index Structures

Seok Jae Lee
School of Electrical&Computer Engineering
Chungbuk National Univ., Cheongju, Korea

Seok 11 Song*
Dept. of Computer Engineering
Chungju National Univ., Chungju, Korea

Jae Soo Yoo
School of Electrical& Computer Engineering
Chungbuk National Univ., Cheongju, Korea

ABSTRACT

Emerging modern datdbase applications require multi-dimensional index structures to provide high performance for data retrieval.
In order for a multi-dimensional index structure to be integrated into a commercial database system, efficient techniques that provide
transactional access to data through this index structure are necessary. The techniques must support all degrees of isolation offered
by the database system. Especially degree 3 isolation, called “no phantom read,” protects search ranges from concurrent insertions
and the rollbacks of deletions. In this paper, we propose a new phantom protection method for multi-dimensional index structures

that uses a multi-level grid technique.

The proposed mechanism is independent of the type of the multi-dimensional index structure,

i.e., it can be applied to all types of index structures such as tree-based, file-based, and hash-based index structures. In addition, it
has a low development cost and achieves high concurrency with a low lock overhead. It is shown through various experiments that

the proposed method outperforms existing phantom protection methods for multi-dimensional index structures.

Keywords.: Concurrency Control, Phantom Protection, Multidimensional Index.

1. INTRODUCTION

In the past couple of decades, applications that use modern
databases, such as geographic information systems (GIS),
mobile location services (MLS), computer-aided design (CAD),
medical image repositories and multimedia applications, have
been developed. The applications commonly are required to
manipulate multi-dimensional data. For example, GISs store
and retrieve two-dimensional geographic data about various
types of objects such as a building, a river, a city, and so on.
MLS systems provide clients with the current locations of
moving objects such as mobile phones. The locations of
moving objects are represented as points in a two-dimensional
space.

To help satisfy the requirements of these database applications,
various multi-dimensional index structures have been proposed.
There are space-partitioning methods like Grid-file [1], K-D-B-
tree [2], and quad-tree [3] that divide the data space along
predefined or predetermined lines regardless of the data

* Corresponding author. E-mail : sisong@chungju.ac.kr
Manuscript received May 14, 2007 ; accepted June 11, 2007

distributions. On the other hand, methods such as R-tree [1],
R+-tree [4], R*-tree [5], X-tree [6], SR-tree [7], M-tree [8],
TV-tree [9] and CIR-tree [10] are data partitioning index
structures that divide the data space according to the
distribution of data objects inserted or loaded into the tree.
Hybrid-tree [11] is a hybrid approach of data partitioning and
space partitioning methods, The VA-file [12] uses a flat file
structure and [13] uses hashing techniques.

In order for multi-dimensional index structures to support
modern database applications, they need to be integrated into
existing database systems. Even though integration is an
important and practical issue, not much previous research exists
regarding this issue. To integrate an access method into a
DBMS, we must consider problems such as concurrency
control and recovery. The concurrency control mechanism has
two independent challenges. First, techniques must be
developed to ensure the consistency of the data structure in
presence of concurrent insertions, deletions, and updates.
Second, phantom protection methods that protect searchers’
predicates from subsequent insertions, and the rollbacks of
deletions before the searchers commit must be developed [14],
[15]. Database systems offer transactional isolation besides

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures 7

the maintenance of the physical consistency of index structures.
The ISO and ANSI SQL standards mandate true isolation as the
default. However, most DBMSs support four degrees of
isolation such as dirty read, committed read, repeatable read,
and no phantom read. They allow SQL users and application
programmers to choose a proper isolation degree for their
application domain for performance reasons. On the first issue,
which is the maintenance of physical consistency of index
structures, several methods that use lock coupling techniques
and link techniques have been proposed for multi-dimensional
index structures [16-20]. On the other hand, on the second
issue, which is the need for a phantom protection technique,
only a few methods have been proposed [14-15], [18].

Several matured phantom protection methods for B+-Tree exist,
e.g., key range locking [21] and next key locking [22]. They
rely on the presence of a total order over the underlying data
based on their key values. However, in multi-dimensional
index structures no such an ordering between keys exists so the
existing phantom protection methods for B+-Tree are not
applicable. Therefore, the first developed phantom protection
method for multi-dimensional index structures uses a modified
predicate locking mechanism [18] instead of the techniques
described in references [21] and [22]. Predicate locking offers
potentially higher concurrency. However, the lock overhead of
a predicate locking approach is much higher than that of a
granular locking approach. For that reason, a granular locking
method is preferred [14]. Consequently, Chakrabarti and
Mehrotra proposed new approaches that use a granular locking
mechanism in multi-dimensional index structures as described
in [14] and [15]. The granular locking approaches are more
efficient than the predicate locking approach in reference [18].
However, these approaches still have some problems. First, the
lockable granules are the nodes of index trees. Therefore, it is
difficult to integrate them with existing concurrency control
algorithms that use locks on the nodes of index trees. Second,
they work efficiently in space partitioning methods that do not
allow overlaps between lockable granules. However, in data
partitioning methods with more general index structures, they
are less efficient because of the overlaps between the index
nodes. Thus, the insert algorithms of the index structures must
be modified. Finally, they are only applicable to tree-based
index structures. Even though most of the existing multi-
dimensional index structures are tree-based, there are several
nontree-based index structures such as the VA-file [12] and the
hashing technique [13]. They do not need complex concurrency
control algorithms to maintain the consistency of index
structures unlike the tree-based index structures. However,
proper phantom protection methods should be provided.

In this paper, we propose a new phantom protection method
that uses a hybrid approach consisting of predicate locking and
granular locking. Actually, our target application domain
contains Geographical Information Systems (GIS), multilevel
secure data bases (MLS), spatio-temporal systems and others
where the number of dimensions is 2 or 3. The basic idea of the
proposed method is to partition the multi-dimensional data
space into a fixed number of cells and to assign a unique
number to each cell. Then, we use the cells as lockable units.
A searcher’s predicate is mapped to a set of a number of cells
by selecting cells that are overlapped with the searcher’s

predicate. The searcher acquires locks on the cells to protect
phantoms. An inserter (deleter) maps an object to be inserted
(deleted) to a number of cells and acquires locks on the cells.
The proposed phantom protection method does not require any
modification to the original algorithm of the index structures.
Also, it does not obtain any locks on the nodes of index
structures. Therefore, it is easy to integrate the proposed
method with existing concurrency control algorithms. Finally,
it supports all kinds of index structures regardless of whether
these structures are tree-based, file-based, or hash-based index
structures. We perform various experiments to verify the
superiority of the proposed phantom protection method. The
experimental results show that our method outperforms the
existing methods in terms of response times and lock conflict
ratios of various operations.

The contributions of our paper can be summarized as follows.
First, the proposed phantom protection method is easy to
implement. Also, the integration of the proposed method into
existing DBMSs is straightforward. Second, it can be used for
all kinds of index structures regardless of their basic data
structures, e.g., tree-based, file-based, or hash-based. Finally,
various experiments have shown that the performance of the
proposed method outperforms existing methods.

This paper is organized as follows. Section II provides a
detailed description of existing phantom protection methods
and presents the motivating factors that helped lead to our
proposed algorithm. In Section III, we describe the proposed
phantom protection method. In Section IV, we show
performance results and finally, Section V concludes this paper.

2. RELATED WORK
2.1 Existing Phantom Pretection Methods

Several matured phantom protection methods for the B+-Tree
index have been proposed such as key range locking [21] and
next key locking [22]. They rely on the presence of a total
order over the underlying data based on their key values.
However, in multi-dimensional index structures, no such an
ordering between keys exists so the existing phantom
protection methods for the B+-Tree index are not applicable to
them.

In predicate locking mechanisms, searchers register their search
predicates in a tree-global table, so that inserters and deleters
can check conflicting concurrent searchers' predicates.
Similarly, inserters and deleters register their keys as predicates
in the tree-global table, which is checked by searchers for
conflicts with their predicates. The single predicate lock is
sufficient for a search operation to protect the entire search
range, so no locks have to be placed on data records.

However, predicate locks are less efficient to set and check
locks. Every check must go through the entire tree-global list
of existing predicates which can be very time consuming.
Also, searchers must set their predicate locks before the index
is accessed and any data records are retrieved. Unlike [21] and
[22], the locked key range is not expanded gradually. This can
reduce the concurrency if search operations are performed in an
interactive fashion.

International Journal of Contents, Vol. 3, No. 2, June 2007

8 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

To our knowledge, Kornacker, Mohan, and Hellerstein
proposed the initial phantom protection method for multi-
dimensional index structures [18]. It addressed the above
problems of the predicate locking mechanism. They proposed
hybrid approaches that synthesize two-phase locking of a data
record with predicate locking. In the hybrid mechanism, data
records that are scanned, inserted, or deleted are protected by
_the two-phase locking protocol. In addition, searchers set
predicate locks to prevent phantoms. Furthermore, the predicate
locks are not registered in a tree-global list before the searcher
starts traversing the tree. Instead, the locks are directly attached
to nodes.
Predicate attachments are performed so that the following
invariant is true at all times. If a searcher's predicate is
overlapped with a node's minimum bounding rectangle (MBR),
the predicate must be attached to the node. An inserter checks
only the predicates attached to its target leaf. A deleter
performs a logical delete, i.e., a leaf entry is not physically
deleted but is only marked as deleted. Searchers attach their
predicates to the nodes that they visit. The predicates of the
nodes are only removed when the owner transactions commit.
Since the tree structure changes dynamically as nodes split and
MBRs are expanded during key insertions, the attached
predicates have to adapt to the structural changes. In order to
handle this problem, the method proposed in reference [18]
replicates existing predicates to newly overlapped nodes by
structural changes. Possible structural changes mentioned in
[18] are node splits and MBR updates.
The first case is a node split which creates a new node whose
MBR might be consistent with some of the predicates attached
to the original node. The invariant is maintained by attaching
those predicates to the new node. The second case involves the
expansion of a node's MBR causing it to become consistent
with additional search predicates. The additional search
predicates at other nodes must be attached to the node. The
updater that expanded the MBR must traverse the tree to find
predicates.
The hybrid mechanism of [18] has some drawbacks. First,
each node of the index trees has an additional space for a
predicate table consisting of predicates of searchers, inserters,
and deleters. The size of the table is variable. The contents of
the table must be changed whenever the MBR updates or node
splits are performed. These properties make the maintenance of
predicate tables expensive. Second, the lock range is not
expanded gradually. The reason is that predicates have to be
attached to the visited nodes top-down, starting with the root.
This can block an insertion into the search range, even if the
leaf where the insertion takes place has not been visited by the
search operation.
To overcome the shortcomings of the hybrid mechanism of
[18], Chakrabarti and Mehrotra have proposed a granular
locking approach in references [14] and [15]. While predicate
locking offers potentially higher concurrency, typically
granular locking is preferred since the lock overhead of a
predicate locking approach is much higher than that of a
granular locking approach. References [14] and [15] define
the lowest level MBRs as the lockable granules. Each lowest
level MBR corresponds to a leaf node of the R-tree. The
granules dynamically grow and shrink with insertions and

deletions of entries to adapt the data space to the distribution of
the objects. The lowest level MBRs alone may not fully cover
the embedded space, i.e., the set of granules may not be able to
properly protect search predicates resulting in phantoms.
Accordingly, they define additional granules called external
granules for each non-leaf node in the tree, such that the lowest
level MBRs together with the external granules fully cover the
embedded space.

Updaters (inserters and deleters) acquire ix-locks on a minimal
set of granules sufficient to fully cover the object followed by
an x-lock on the object itself. Searchers acquire s-locks on all
granules that overlap with the predicate being scanned. In this
strategy, the insertion of an object that overlaps with the search
region of a query is not permitted to execute concurrently,
thereby preventing phantoms from arising. Chakrabarti and
Mehrotra refer to this strategy as the cover-for-insert and
overlap-for-search policy. The reverse policy is the overlap-for-
insert and cover-for-search. In this policy, ix-locks are acquired
on all overlapping granules for inserters and deleters and s-
locks are acquired on the minimal set of granules that cover the
scan predicate for search that could also be followed.

However, the above two locking policies are not sufficient to
prevent phantoms from arising when the granules are
dynamically changing because of insertions and deletions.
Therefore, some additional locking strategies are proposed. The
ultimate lock protocols are summarized as follows. First,
inserters acquire ix-locks on all granules that contain the newly
inserted object. If the MBR of a node is changed by a new
entry, they obtain short duration ix-locks on all overlapping
nodes. If overflow occurs, they acquire a six-lock on the
overflowed node before a split, and acquire ix-locks on the
original node and newly created node after the split and then a
s-lock on its parent node's external granule. Second,
searchers obtain s-locks on all overlapping granules with the
search predicate. Finally, deleters acquire ix-locks on all
granules that contain the object to be deleted when logically
deleting it and physically obtain short duration ix-locks on the
granule that contains the object when deleting the entry.

The granular locking mechanism is much more efficient than
the predicate locking mechanism. The lockable granules are
nodes of index trees so it uses the existing object locking
mechanism of the database systems. Also, unlike the
predicate locking mechanism, this mechanism does not need to
maintain additional information at each node for storing
predicates. However, when the granules are changed or
overflow occurs, this mechanism must acquire ix-locks on all
nodes overlapped with the object. This requires the inserters
to traverse the index tree from the root to find overlapping
nodes. Since this mechanism acquires locks on index nodes,
it is difficult to integrate it with existing concurrency control
algorithms because of conflicts of purpose of the locks.

2.2 Motivation

References [14] and [15] proposed an approach to phantom
protection that uses the granular locking mechanism that is
more efficient than the predicate locking approach. Even
though this locking mechanism outperforms the predicate
locking mechanism of [18], this mechanism has some problems.

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures 9

First, the lockable granules are nodes of the index tree and a
complex locking strategy is applied to them. Consequently, it
is difficult to integrate the lockable granules into existing
concurrency control algorithms that use locks on index nodes.
Second, to apply them to R-trees that are one of the data
partitioning index structures, the insert algorithm should be
modified to support the phantom protection methods. The
modified insert algorithms require additional node accesses.
Finally, phantom protection methods are only applicable to
tree-based multi-dimensional index structures. There are
several nontree-based multi-dimensional indexes like structures.
In this paper, we propose a new phantom protection method
that is a hybrid approach that synthesizes predicate locking and
granular locking mechanisms. The proposed mechanism is
independent of the type of multi-dimensional index structures,
i.e., it supports tree-based, file-based, and hash-based index
structures. Also, the proposed new protection method does
not need to obtain locks on data records since it uses predicate
locking approaches. The proposed phantom protection
method achieves a low development cost and high concurrency
with a low lock overhead.

3. THE PROPOSED PHANTOM PROTECTION
METHOD

3.1 The Basic Idea

The basic idea of the proposed phantom protection method is to
partition the multi-dimensional data space into 2° rectangular
cells, where b denotes the user specified number of bits. Then,
we allocate a unique bit-string of length b to each partitioned
cell. Each unique bit string can be converted to a unique
integer value. The integer value is used as a lock identifier of
database systems. A searcher’s predicate is mapped to a
number of cells. The predicate uses the bit-string of each cell as
a lock identifier. Then, the searcher acquires s-locks on all of
the cells that correspond to the search predicates before starting
search operations. On the other hand, inserters and deleters
obtain x-locks on the cells corresponding to the objects to be
deleted and inserted.

A small number of bits, b;, are assigned for each dimension, i,

Slices, 2" , along the dimension, i, are determined in such a
way that all slices are equal. Let b be the sum of all b;, i.e.,

d
b=>"b,

=l | where d is the number of the dimension. Then, the
data space is divided into 2° hyper-rectangular cells, each of
which can be represented by a unique bit-string of length, b.
Each cell covers the same size of region. The union of the cells
covers the whole data space.
We use the partitioned cells as lockable units. A searcher’s
predicate can be converted to a number of cells. This is easily
done by selecting cells that are overlapped with the predicate.
Since we select all overlapped cells, the union of the selected
cells covers the area of a search predicate. The searcher, then,
acquires s-locks on all of the selected cells. Easy mapping of a
given search predicate onto a set of lockable units is an
important property for an efficient phantom protection method

[91.

We should be able to easily map the cells to lock identifiers
used by the standard lock managers of database systems to
reduce the cost of lock management. Each cell has a unique
bit-string of length, 5. The bit-string can be mapped to a
unique integer. This mapping will be achieved by casting the
bit-string to an integer type. It means that each cell is
represented with a unique integer that is generally used as a
lock identifier for the standard lock managers. For example,
in MIDAS [23], the record lock identifier of MIDAS consists
of a page identifier (4 bytes), a slot number (2 bytes), and a
reorganization slot counter (2 bytes) in a 32 bit machine. A bit-
string can be mapped to a slot number of the record lock
identifier. Since the slot number is 2 bytes, if we allocate one
page virtually for the proposed phantom protection method, the
maximum number of bits becomes 16, i.e., we can pattition the
data space to 2'¢ cells. If we allocate two pages, the
maximum number of cells will be increased to 2-2'°.

With this mapping mechanism, the searcher can acquire s-
locks on all of the selected cells by using the record locking
mechanism of database systems. Similarly, an inserter (deleter)
maps the MBR of an object to be inserted (deleted) to a number
of cells, and acquires x-locks on the cells. This will protect
against phantom problems. Figure 1 shows an example of the
proposed algorithm. In this example, we assume that the data
space is of 2 dimensions, the region is from (0, 0) to (15, 15),
and b is 8. We divide the data space into 2° cells.

-
o

-
»~

-
w

-
~

-
-

T RN R

O 12245678 9101112131415

Fig. 1. Mapping of the search region

The shaded area represents a searcher’s predicate which is from
(0, 0) to (2, 2). The number of cells overlapped with the search
predicate is 9. We map the cell that covers from (0, 0) to (1, 1)
to 00000000(0). With the same method, the remained cells are
mapped to 1, 2, 16, 17, 18, 32, 33 and 34. The searcher
acquires s-locks on all of the cells by using a standard lock
manager before starting its search operation. Subsequently, an
inserter is trying to insert an object (0, 0) into the data space.
Like the searcher, the inserter maps the object to a cell 0, and
requests a commit duration x-lock on the cell before starting its
insert operation. However, since the searcher already has an s-
lock on the same cell, the inserter must wait until the searcher
commits.

The number of locks of a searcher in the proposed method is
totally dependent on the b and its query size, i.e., as the b and
the query size increase, the number of locks increases. The
number of locks of a searcher is calculated approximately by

International Journal of Contents, Vol. 3, No. 2, June 2007

10 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

the following equation, sn= |—2b -queryszze-] , Where sn is the
number of cells of the searcher’s predicate. The term, querysize
is the query size of the searcher which is the ratio of the region
size of the searcher’s predicate to the total size of the data
space.

When b is 10 and a querysize is 0.05, the sn is 51. If bis 16
with the same querysize, the sn is 3237. As will be shown in
the performance evaluation presented in Section 4, the range 6
to10 is enough of a range for the value of 5. Also, we can fix
the b as a reasonable value. However, the querysize will be
variable according to the users. Therefore, even though the b
can be fixed to be 10, as the querysize is increased, the sn is
linearly increased.

The shortcoming of the proposed algorithm is that the required
number of locks for a searcher’s predicate can be too large
according to its query size. This lock overhead may degrade
overall performance. To overcome this problem, we
hierarchically organize the partitioned cells like a Multi-Level
Grid-file. On each level, we group cells to 2-1-d clusters of cells,
where 1 is the level. For example, as shown in Figure 2, on
level 1, 4 clusters exist and each cluster contains 64 cells; and
on level 2, there are 16 clusters, and each cluster contains 16
cells. On the highest level, level 0, only one cluster that covers
all of the cells exists. The number of levels is determined by the

i
—|+1
equation, d .

After clustering the cells on each level, we also assign a unique
bit-string of length (!b+b) to each cluster, where 1b denotes the
number of bits for representing the level. A bit string for a
cluster is composed of a bit string for a level of length, /, b and
the bit string of the lower left cell in the cluster. In this
hierarchical approach, lock identifiers are determined as
follows. After obtaining overlapped cells with a searcher’s
predicate, for each level, clusters are selected from the selected
cells. This is done in ascending order of level.

For example, in Figure 3, we map a searcher’s predicate which
is from (0, 0) to (2, 2) to lockable units. Overlapped cells
with the search predicate are 0, 1, 2, 16, 17, 18, 32, 33 and 34.
Then, we find clusters from the selected cells. There is one
cluster on level 3, and 5 clusters on level 4. The cluster on
level 3 is mapped to 011(level) + 00000000 (bit-string for the
lower left cell in the cluster), which is 768 as a decimal integer.
The remaining clusters can be also mapped by the same method
to integers. The searcher acquires s-locks on all of the mapped
clusters. The number of locks required for the searcher is
reduced to 6 compared to that of Figure 1. With this strategy,
we can reduce the number of locks.

5
14
13
12
1%

[-BE SRR N L R

0 1234586 7§68 8101112131415

level 1

E- IR SIEF NN I -

0 12 345 6 7|8 810 1112131415

fevel 2
Fig. 2. Hierarchical organization

In this hierarchical approach, for an inserter (deleter), x-locks
on the cells that are overlapped with the MBR of an entry to be
inserted (deleted) are not sufficient. For example, in Figure 3,
the searcher keeps an s-lock on a cluster on level 3 and s-locks
on 5 clusters on level 4. Then, an inserter is trying to insert an
object (0, 0). The inserter maps the entry to a cell 0, requests an
x-lock on the cell, and acquires an x-lock on it since the
searcher keeps s-locks not on the cell 0 but the cluster 768.
The entry (0, 0) will be a phantom for the searcher. To avoid
this situation, the inserter must acquire ix-locks on all clusters
that are overlapped with the MBR of the entry except the
lowest level cluster. The x-lock must be acquired on the lowest
level cluster. Again, in Figure 3, the inserter must acquire ix-
locks on cluster 000+00000000, 001+00000000,
010+00000000 and 011400000000, besides an x-lock on
100+00000000. In this case, the inserter cannot acquire the ix-
lock on 011+00000000 until the searcher commits.

15
14
13
12
H

DawNLAIRND

01234567 89101112131415
Fig. 3. Mapping of the hierarchical approach

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures 1

3.2 Dynamic Phantom Protection Method

The proposed phantom protection method described in the
previous subsection assumes that the multi-dimensional data
space is static. If the data space of an application is static and
we preliminary know the data space area, the proposed
algorithm works well. However, when the entire data space is
dynamically changed, we should estimate the maximum data
space area to apply our proposed method. However, this will
increase the dead space and the overall concurrency may be
downgraded.

Consequently, we propose a dynamic phantom protection
method. First, we assume reading and writing of words are
atomic as in most of the modern computer architectures [24].
In order to efficiently protect phantoms in the dynamically
changing data space, 2b rectangular cells must be adapted as
the data space grows or shrinks. Figure 4(a) shows the
original data space. Figure 4(b) shows the expanded data
space by a number of insertions so the cells are resized to be
adapted to the changed data space. Once the data space is
changed and cells are resized, inserters, deleters, and searchers
must acquire locks on the resized cells.

2| 13] 9] 15

Al e ST Ty

W "W

UV RU N T R

o
o

o PSS SN SR SR
: @

JPU ORGSR NN SR
\4

[S

L.
]

)
Fig. 4. The expansion of data space - 1

For example, in Figure 4, a searcher with a predicate, (6, 6) to
(8, 8), which is initiated before the data space is changed, has
acquired an s-lock on cell 15 which is overlapped with the
search predicate. Then, the data space grows and the cells are
resized to be adapted to the changed data space as in Figure 5.
An inserter requests an x-lock on the cell 10' to insert a new
point entry (7, 7). It can acquire the x-lock on the cell since
none keeps locks on the 10". Subsequently, the searcher lost the
s-lock on the area (6, 6) to (8, 8). The new entry (7, 7) can be a
phantom for the searcher if the searcher scans the area
repeatedly.

In order to avoid this situation, the inserter must acquire x-

locks on cells 15', which is 10 in the original data space, as well
as 10. However, if transactions that are initiated before the
data space is changed are not remained, the inserter does not
need to acquire the x-lock on 15. From now on, a transaction
that is initiated before the data space is changed and a
transaction that is initiated after the data space is changed are
called an old transaction and a new transaction, respectively. In
Figure 5, we can easily know why cell 15 should be locked.
The shaded cell, (6, 6) to (9, 9), is 10'. The cell 10" is
overlapped with a cell 15, (6, 6) to (8, 8), on the old data space.
From this fact, we can determine that the cell 15 of the original
data space must be locked. Therefore, final cells to be locked
are 10' and 15' on the changed data space. For another
example, if a searcher tries to obtain an s-lock on the cell 5' in
Figure 5, the searcher must also acquire locks on 5, 6, 9 and 10
of the original data space that are overlapped with cell 5' of the
changed data space.

L 7 T

Rl T B R R e o TR

[EEger—

] 23 4 & B3
Fig. 5. The expansion of data space -2

Rule 1. If the data space has been changed and old
transactions are still being performed, new transactions must
acquire locks on the cells of the changed data space; and,
moreover, the cells of the original space that are overlapped
with the locked cells of the changed data space.

With Rule 1, we can protect phantoms from arising even when
the data space is dynamically changed. However, we must
solve the following two problems to apply this rule. First,
who does determine the time to change the MBR of the data
space and how does he or she inform other transactions of the
changed MBR? Second, how can new transactions know that
old transactions remain?

In tree-based index structures, the MBR of the root node
represents the MBR of the data space. When the index
structure is nontree-based, we can easily maintain the MBR of
the data space by updating the MBR on every insertion. An
inserter that updates the MBR of the root node can determine
the time to change the MBR of the data space. If the MBR of
the data space is changed whenever the MBR of the root node
is updated, the overhead to handle the change may reduce the
concurrency. Therefore, we fix the amount of the change to
decide the time to change the MBR of the data space as

[sidelength,

b;

2" -l, where sidelength; denotes the " dimension's
length of the data space and bi denotes the number of bits for
the i dimension. That is, we change the MBR of the data space
and inform others of the change when one of the sidelength; is
increased or decreased by the side length of a cell along the

International Journal of Contents, Vol. 3, No. 2, June 2007

12 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

dimension, i.

In order to inform others about the change, we use data
structures shown in Figure 6. In Figure 6, the array
dataspace_mbr[] is used to store old and new MBRs of the data
space. The current_mbr is a flag that has 0 or 1 as values. This
flag is used as the index number of array dataspace_mbr[]. The
current_mbr indicates which one is the new MBR between the
dataspace_mbr[current_mbr] and dataspace_mbr[1-
current_mbr]. Finally, the array cnt[] represents the number of
old and new transactions that currently are being performed.
cnt[current_mbr] means the number of transactions that are
referring to the new MBR, dataspace_mbr[current_mbr].

struct Header

{
current_mbr; //0orl
cnt[2];

dataspace_mbr[2];
}

Fig. 6. Data structure for the proposed algorithm

Whenever an inserter changes the MBR of the root node, the
inserter checks the amount of the change by comparing the
current MBR of the root or the whole data space with
dataspace_mbr[current_mbr]. If one of the sidelength; is

sidelength,

changed more than { 2" }, the inserter updates the
current_mbr as I-current_mbr so that current_mbr indicates
the other dataspace_mbr[] which was the old MBR. Then, it
updates the dataspace_mbr [current_mbr].

Inserters, deleters, and searchers increase cnt[current_mbr] by
1 before starting their operations and decrease it by 1 when the
initiating transactions commit or rollback. Also they generate
locks according to Rule 1. At this time, they can decide
whether old transactions still exist by reading the
cntfcurrent_mbr], i.e., new MBR and cntfI-current_mbr], i.e.,
old MBR. Inserters, deleters, and searchers acquire s-latches
on the Header data structure to maintain consistency. They
increase or decrease cnt/] without acquiring x-latches since we
assume reading and writing of words are atomic. Only
inserters and deleters acquire x-latches on the Header when
updating dataspace_mbr/[]. The data structure can be added to
an index table that is created when an index is opened. We can
ignore the overhead to maintain the Header data structure
because the data structure is small enough and most operations
acquire s-latches on the Header for instant duration. X-latches
are acquired only when the dataspace_mbr[] is updated.
Usually, the update of dataspace_mbr{] occurs very
infrequently. Also, the data structure does not need to be stored
permanently.

Finally, we must consider a situation as indicated in Figure 7.
An inserter can insert an object (the point in Figure 7) to the
outside of the data space. Also, a searcher’s predicate (the
circle in Figure 7(a)) can be placed on the outside of the data
space in Figure 7(a). However, the inserter and the searcher
only acquire locks on the cells that are overlapped with the
search predicate or the MBR of an entry to be inserted.

Therefore, the search predicate is not fully protected from
arising phantoms. In this example, the inserter does not acquire
any lock. The searcher acquires s-locks on cells 14 and 15.
Consequently, the inserter can insert the entry to the search
predicate. It will be a phantom for the searcher.

To solve this problem, we define additional lock units. As
shown in Figure 7(b), the shaded cells are the additional lock
units that unlimitedly cover the outside of the current data
space. The actual data space is covered by cells 0 to 15. To
cover the outside of the data space, we partition the outside of

b:
the data space into 2% -2d +2° cells. For example, additional
2" cells are along the upper and lower sides of each dimension

i, and 29 cells are on comers of the data space. Then, we apply
our mapping method; that is, we select all cells that are
overlapped with the MBR of an entry to be inserted or a
searcher’s predicate.

The overall algorithms of the proposed method are presented in
Figures 8 and 9. Searchers release a s-latch on the Header
after getting cell_ids{], that is, an array of cell IDs to be locked.
The locks are released when the initiating transaction commits,
ie., commit duration locks. If cntfI-current_mbr] is not 0,
there are old transactions that are referring to
dataspace_mbr[l-current_mbr]. In this case, we acquire
locks on old and new data spaces.

2113 14 15

3| 3 i?yg
S}
% | 2

121 13 | 14 1 15 | 18 | 17

Fig. 7. Additional lock units

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures 13

¥

Search(query_range, etc)

acquire s-latch on Header;

cnt[current_mbr]++;

read dataspace_mbr[current_mbr];

cell_ids[] = get overlapped cells with query_range;
if (cnt[1-current_mbr] = NULL)

read dataspace_mbr[1-current_mbr];
cell_ids[] = get cells to be locked;

release s-latch on Header;

acquire commit duration s-locks on cell_ids[];
perform operations;

acquire s-latch on Header;
cat[current_mbr]--;

release s-latch on Header;

Fig. 8. Search algorithm

{

}

Insert/Delete(entry, etc)

acquire s-latch on Header;
cnt[current_mbr]++;
read dataspace_mbr[current_mbr];
cell_ids[] = get overlapped cells with entry.mbr;
if (ent[1-current_mbr] != NULL)
{
read dataspace_mbr[1-current_mbr];
cell_ids[] = get cells to be locked;
}
release s-latch on Header;
acquire locks on cell_ids{];
perform insert/delete operation;
acquire s-latch on Header;
if (root_mbr is changed more than threshold value)
{
if(cnt[1-current_mbr] = Q)
{
upgrade s-latch on Header to x-latch;
current_mbr = 1-current_mbr;
update dataspace_mbr[current_mbr];
cnt{ 1-current_mbr]--;
release x-latch;
}
release s-latch;
}
else
{
cnt[current_mbr]--;
release s-latch;

}

Fig. 9. Insert/Delete algorithm

Inserters and deleters perform more complex actions than
searchers to protect phantoms. They need to check if the
dataspace_mbr[current_mbr] needs to be updated whenever
completing their operations. When visiting the root to
propagate updated MBRs or splits, they check that the
root_mbr is changed more than the threshold value as described
above. If the amount of change is greater than the threshold
value, they check if old transactions that are referring to
dataspace_mbr[1l-current_mbr] are remaining. If there are
old transactions, they are finished without updating
dataspace_mbr[1-current_mbr] since old transactions are
referring to dataspace_mbr[1-current_mbr]. The update will be
done later by other transactions that update the root MBR.
Otherwise, they upgrade s-latch to x-latch, update current_mbr
to I-current_mbr, and dataspace_mbr [current_mbr] to the
root_mbr. The x-latches can be overhead. However, the
updates of dataspace_mbr[] occur infrequently.

4. PREFORMANCE EVALUATION
4.1 Environments

To evaluate the performance of our phantom protection method,
we compared its performance to the granular locking (GL)
approach proposed in [15]. We integrated the GL approach
and our proposed phantom protection method into the
concurrency control algorithm of [20], which is called the
RPLC. The RPLC is mainly focused on the physical
consistency of an index structure.

We implemented both phantom protection methods based on
the man-machine integration design analysis system (MIDAS)
that is a multi-user storage system for a base of aircraft data
(BADA) DBMS [23]. Both of them are implemented with
locks, latches, and the logging APIs of MIDAS. In order to
implement the GL, we modified the insertion algorithm of the
RPLC so as to perform correctly its granular locking algorithm.
The modified insertion algorithm performed additional tree
traversing whenever MBRs were changed by insertions or
deletions of entries. In addition, we modified the locking
strategy of the RPLC to adapt to the granular locking method.
Also, our phantom protection method was implemented on the
RPLC. The implementation was simple and easy. We did not
need to modify the original insert, search, and delete algorithms
of the RPLC. We just added functions to generate locks for
search predicates and objects to be inserted or deleted. Then,
the additional data structure was added into the index table of
MIDAS. We allocated the root node for lock identifiers of
partitioned cells since the root node of the RPLC was not
changed unless the index structure was destroyed. The first
and second records of the root node were reserved as a tree
lock and a node lock so the available lock identifiers for
phantom protection are 2 ~ 2b+2.

We used a uniformly distributed 200000, 2~3 dimensional
synthetic point data set. One of the important parameters of
an index tree is a node size. According to the node size, the
performance of the index trees is varied. We performed
experiments with varying the node size ranging from 4 Kbytes
to 16 Kbytes. In all experiments, our phantom protection

International Journal of Contents, Vol. 3, No. 2, June 2007

14 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

method outperformed GL. Overall performance was improved
as the node size became bigger. Also, the performance gap of
both algorithms increased about 10~15 % when the node size
was 16 Kbytes. The increase of the performance gap may be
from the growth of contention. We will discuss the results of
experiments when the node size is 16Kbytes and the number of
dimension is 2 for brevity.

Initially, a CIR-tree [10] was constructed by bulk loading
techniques. Subsequently, feature vectors were inserted
concurrently by multiple processes under a specific workload.
Table 1 shows the workload parameters. According to the
input parameters, the workload generators decided the number
of search and insert processes, the number of concurrent
processes, the initial number of feature vectors to construct
index trees, and the selectivity of range queries.

Subsequently, the workload generators passed the decided
values to a driver program that was written with C and MIDAS
APIs. The driver executed search and inserted processes. It
randomly selected feature vectors from an already inserted data
set for queries and from a data set to be inserted for insertions.
Each process executed multiple transactions. We fixed the
number of buffer pools as 100 when initiating MIDAS. The
platform used in our experiments was a dual Ultra Sparc
processor, Solaris 2.7 with 128 Mbytes of main memory.

Table 1. Paramenters and values

Parameters Values

Number of feature vectors 200000

Insert probability 0% ~ 100 %

Range of queries 02~0.8%
Number of concurrent 10 ~ 50

Processes (MPL)

Number of bits ?éf,’ 21;)6, 1024 cells)

4.2 Experimental Results

Fig. 10 and Fig. 11 compare the performance of the proposed

phantom protection method and granular locking (GL) method
in terms of response time when the numbers of insert and
search processes are varied. Also, we varied the number of
bits from 6 to 10. The 64, 256 and 1024 in Figures 10 and
11 denote the response times of the proposed algorithm when
the number of bits is 6, 8 and 10 respectively.

Figure 10 shows the response times of search operations when
the insert process ratio is varied by 0 to 100 percent. The
proposed algorithm outperforms the GL method regardless of
the number of bits. However, when the insert process ratio is
0, all cases show almost the same results. Since their basic
search algorithms except the locking strategy are the same, the
results mean that the lock overheads of GL and the proposed
method are similar.

As the insert process ratio increases, the performance gap
between the GL method and the proposed method becomes
more and more large. When the number of bits is 10, the
performance gap is maximized. This increase means that the
larger the number of cells, the higher the performance of the

proposed algorithm. However, actually, the difference among
graphs 64, 256, and 1024 is marginal. The reason is that the
larger the number of cells, the more locks to be acquired.
Consequently, the lock overhead is increased. A similar aspect
is shown in Figure 11. However, the performance gap
between GL and the proposed method is larger than that of
Figure 10. The insert algorithm of GL is more complex than
that of the proposed method. It must traverse the index tree to
find nodes that are overlapped with the changed MBR by the
insertion of a new entry.

Figures 12 and 13 show the response times of both methods
when the selectivity is varying. As the selectivity increases,
the overall response times of both methods increases. The
proposed method outperforms GL in all cases. The reason is
that as the area of a searcher’s predicate increases, the lock
contention increases. A drawback of the proposed method is
that the number of locks increases as the size of the query
increases. Consequently, this lock overhead may degrade the
concurrency of the proposed method. However, as shown in
Table 2, the average number of locks per a search is not so
large. This lock overhead is compensated by high concurrency
as we showed in the previous figures.

Table 2. Number of locks
Selectivity(%) 0.2 0.4 0.8

Number of locks 11.63 13.893 17.445

Fig. 14 and 15 show the scalability of the proposed method.
The performance of the proposed method is superior to that of
the GL method. As the number of concurrent processes
increases, the performance gap between both methods becomes
larger. This result means that our proposed method is scalable
for the number of concurrent processes.

—e— 64 cells —a— 256 cells

—&— 1024 cells —o— GL

0.16

0.14

0.12

0 0.1
k]

Ro0.08
@
¥ 0.06

0.04

0.02

0% 10% 30% 50% 70% 90%
Insert Process Ratio(%)

Fig. 10. Response time of search transactions
(selectivity=0.2, database size = 200K, MPL = 50)

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures 15

—o— 64 cells —a— 256 cells
—a— 1024 cells —e—GL

0.09
0.08

A

0.07

0.06

(2]
50.05
S0.04
@
00.03

0.02

0.01

i

0% 70%.. % 10!
0% 3 r‘%(’sert rocess atlo(‘??s 0%

Fig. 11. Response time of insert transactions
(selectivity=0.2%, database size = 200K, MPL = 40)

0.12
0.1

8 8

o Sgcogds,
®

F —e— GL l

/

t____ﬁ._/___/.

0.2 04
Selectivity(%)

Fig. 12. Response time of a search transaction
(MPL=40, insert probability=20%, database size=200K)

0.07
0.06
. 0.05
Eo.04
o 0.03
0.02
0.01

L—.— GL —a— PROPOSEDl

s
|
0.2 0.8

0.4
Selectivity(%)

Fig. 13. Response time of an insert transaction
(MPL=40, insert probability=20%, database size=200K)

—+—GL —a— PROPOSED \

0.12

0.1 o
08 /;;
£0.06
So0s A

0.02 /

10 20 40
MPL

Fig. 14. Response time of a search transaction
(selectivity=0.8%, insert probability=20%, database size=
200K)

——GL —s— PRoposeq

0.07

0.06 - T
005 //L
Bo.04

§o.03 71

? .02 /-,

0 L L

20
MPL

Fig. 15. Response time of an insert transaction
(selectivity=0.8%, insert probability=20%, database size=
200K)

5. CONCLUSION

In this paper, we have proposed an efficient phantom protection
method for multi-dimensional index structures. The proposed
phantom protection method is a hybrid approach using
predicate locking and granular locking. It does not require any
modification of the original algorithm used by index structures
and does not acquire any locks on the nodes of index structures.
Therefore it is easy to integrate this proposed method with
existing concurrency control algorithms. Also, it supports all
kinds of index structures regardless of whether the structures
are tree-based or nontree-based.

We have implemented the proposed method on MIDAS, a
storage system of a BADA-3. We used the locking and
logging application programming interfaces (APIs) that are
provided by MIDAS. We, then, performed experiments under
various conditions. The performance results showed that our
proposed algorithm outperformed GL. Our method is scalable
for the number of concurrent processes and the size of the
query. The performance improvements are not so large, but the
development cost of our method is much cheaper than that of
the GL method.

In our further research, we will perform more extensive

International Journal of Contents, Vol. 3, No. 2, June 2007

16 Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

experiments. We described experiments with synthetic data in
this paper. Even though the results were sufficient to show
the superiority of our method, we need to perform experiments
with a real data set for the completeness of the verification.
Also, we need to show that our method works well in a high-
dimensional data space.

REFERENCES

[1] J. Nievergelt, H. Hinterberger and K. C. Sevcik, “The
Grid File: An Adaptable, Symmetric Multikey Structure,”
ACM Transactions on Database Systems, Vol. 9, No. I,
1984, pp. 38-71.

[2] Silberschatz and P. B. Galvin, “Operating System
Concepts,” Addison-Wesley, 1995.

[31 R. A. Finkel and J. L. Bentley, “Quad Trees: A Data
Structure for Retrieval on Composite Keys,” Acta
Informatica, Vol. 4, 1974, pp. 1-9.

[4] T. Sellis, N. Roussopoulos and C. Faloutsos, “The R+-
Tree: A Dynamic Index for Multi-Dimensional Objects,”
Proceedings of VLDB, 1987, pp. 507-5.

[5] N. Beckmann, H.P. Kriegel, R. Schneider and B. Seeger,
“The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles,” Proceedings of ACM
SIGMOD, 1990, pp. 322-331.

[6] S.Berchtold, D. A. Keim and H. P. Kriegel, “The X-Tree:
An Index Structure for High-dimensional Data,”
Proceedings of VLDB, 1996, pp. 28-39.

[71 N. Katayama and S. Satoh, “The SR-tree: An Index
Structure for High-Dimensional Nearest Neighbor
Queries,” Proceedings of ACM SIGMOD, 1997, pp.
369-380.

[8] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An
Efficient Access Method for Similarity Search in Metric
Spaces,” Proceedings of VLDB, 1997, pp. 426-435.

[9] K. 1. Lin, H. Jagadish and C. Faloutsos, “The TV-tree: An
Index Structure for High Dimensional Data,” Journal of
VLDB, Vol. 3, No. 4, 1994, pp. 517-542.

[10] J. S. Yoo, M. G. Shin, S. H. Lee, K. S. Choi, K. H. Cho
and D. Y. Hur, “An Efficient Index Structure for High
Dimensional Image Data,” Proceedings of AMCP, 1998,
pp. 134-147.

[11] K. Chakrabarti and S. Mehrotra, “The Hybrid Tree: An
Index Structure for High-dimensional Feature Spaces,”
Proceedings of ICDE, 1999, pp. 440-447.

[12] R. Weber, H. Schek and S. Blott, “A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces,” Proceedings of
VLDB, 1998, pp 194-205.

[13] P. Indyk and R. Motwani “Approximate Nearest
Neighbors: Towards Removing the Curse of
Dimensionality,” Proceedings of STOC, 1998, pp. 604-
613.

[14] K. Chakrabarti and S. Mehrotra, “Dynamic Granular
Locking Approach to Phantom Protection in R-Trees,”
Proceedings of ICDE, 1998, pp. 446-454.

[15] K. Chakrabarti and S. Mehrotra, “Efficient Concurrency
Control in Multidimensional Access Methods,”

Proceedings of ACM SIGMOD, 1999, pp. 25-36.

[16] J. K. Chen and Y. F. Huang, “A Study of Concurrent
Operations on R-Trees,” Journal of Information
Sciences, Vol. 98, No. 1-4, 1997, pp 263-300.

[17] K. V. Ravi, Kanth, D. Serena and A. K. Singh, “Improved
Concurrency Control Techniques for Multi-Dimensional
Index Structures,” Proceedings of Symposium on
Parallel and Distributed Processing, 1998, pp. 580-586.

[18] M. Komacker, C. Mohan and J. M. Hellerstein,
“Concurrency and Recovery in Generalized Search
Trees,” Proceedings of ACM SIGMOD, 1997, pp. 62-72.

[19] M. Kornacker and D. Banks, “High-Concurrency Locking
in R-Trees,” Proceedings of VLDB, 1995, pp. 134-145.

[20] S. I Song, Y. H. Kim and J. S. Yoo, “An Enhanced
Concurrency Control Algorithm for Multi-dimensional
Index Structures,” IEEE Transactions on Knowledge
and Data Engineering, 2004, pp. 97-111.

[21] Mohan, “ARIES/KVL: A Key Value Locking Method for
Concurrency Control of Multiaction Transactions
Operating on B-Tree Indexes,” Proceedings of VLDB,
1990, PP. 392-405.

[22] Mohan and F. Levine, “ARIES/IM: An Efficient and
High Concurrency Index Management Method Using
Write-Ahead Logging,” Proceedings of ACM SIGMOD,
1992, pp. 371-380.

[23] M. Chae, K. Hong, M. Lee, J. Kim, O. Joe, S. Jeon and Y.
Kim, “Design of the Object Kernel of BADA-IIl: An
Object-Oriented Database Management System for
Multimedia Data Service,” Proceedings of Workshop on
Network and System Management, 1995.

f24] S. K. Cha, S. Hwang, K. Kim and K. Kwon, “Cache-
Conscious Concurrency Control of Main-Memory
Indexes on Shared-Memory Multiprocessor Systems,”
Proceedings of VLDB, 2001, pp. 181-190.

Seok Jae Lee
He received the B.S., M.S. and Ph.D
degrees in Computer and

Communication Engineering in 2000,
2002 and 2006 from Chungbuk National
University, Cheongju, South Korea. He is
now a Post Doc. in Chungbuk National
University. His main research interests
are the database system, main memory storage system, cluster
system and real-time distributed computing.

Seok 11 Song

He received the B.S., M.S. and Ph.D
degrees in Computer and Communication
Engineering in 1998, 2000 and 2003
from Chungbuk National University,
Cheongju, South Korea. He is now a
professor in the department of Computer
Engineering, Chungju National
University, Chungju, South Korea. His main research interests
are the database system, index structure, distributed computing
and storage management system.

International Journal of Contents, Vol. 3, No. 2, June 2007

Seok Jae Lee et al. : Phantom Protection Method for Multi-dimensional Index Structures

Jae Soo Yoo

He received the B.S. degree in Computer
Engineering in 1989 from Chunbuk
National University, Chunju, South
Korea. And he received the M.S. and
Ph.D. degrees in Computer Science in
1991 and 1995 from Korea Advanced
Institute of Science and Technology,
Taejeon, South Korea. He is now a professor in the department
of Computer and Communication Engineering, Chungbuk
National University, Cheongju, South Korea. His main research
interests are the database system, multimedia database,
distributed computing and storage management system.

International Journal of Contents, Vol. 3, No. 2, June 2007

17

