Absolute Age Determination of One of the Oldest Quaternary(?) Glacial Deposit (Bunthang Sequence) in the Tibetan Plateau Using Radioactive Decay of Cosmogonic $^{10}Be$ and $^{26}Al$, the Central Kavakoram, Pakistan: Implication for Paleoenvironment and Tectonics

방사성 우주기원 동위원소를 이용한 티벳고원에서 가장 오래된 제4기(?) 빙성퇴적물인 Bunthang sequence의 절대 연대측정과 이의 고환경 및 지반운동에 대한 의미

  • 성영배 (미국 신시내티 대학교 지질학과)
  • Published : 2007.06.30

Abstract

Absolute age of the deposition of 1.3 km-thick Bunthang sequence within the Skardu intermontane basin of the Central Karakoram was determined using radioactive decay of cosmogonic $^{10}Be$ and $^{26}Al$ burial dating. The Bunthang sequence deposited around 2.65 Ma, which is the oldest glaciation in the region. The timing of deposition of the Bunthang sequence is consistent with the previous suggestion that the basin filling took place between Brunhess and Matuyama chrons. Four major sedimentary facies interfinger within the Bunthang sequence: glacial diamict, lacustrine, fluvial and lacustrine facies upward. This sedimentary distinctiveness and the lack of evidence on the faults for alternative pull-apart basin model around the Bunthang sequence, suggest that the depressional basin was formed by deep subglacial erosion during the exrtensive Bunthang Glacial Stage and subsequently the sediments underlain by basal diamict, was quickly deposited by preglacial and paraglacial processes. Temporary ponding of the Indus River due to tectonic uplift in the downstream or blockage by mass movements might make the basin filing more possible. The hypothesis that the single ice sheet developed on the Tibetan Plateau during the global last glacial cycle should be refuted by the existence of the older extensive Bunthang glacier Furthermore, the extensive glaciation during the early Quaternary (and thus progressive decrease in extent with time) suggests that there may have been significant uplift of the Pamir to the west and Himalaya to the south, which would have reduced the penetration of westerlies and Indian summer monsoon and hence moisture supply to the region.

티벳고원의 서쪽, 중부 카라코람의 인더스 강이 지나는 Skardu 근처에서 발견된 약 1.3km의 두께를 보이는 Bunthang 시퀀스의 절대 연대측정을 우주 기원 동위원소인 $^{10}Be$$^{26}Al$의 비를 이용해서 측정했으며 약 2백 65만년전에 급격하게 퇴적된 것으로 확인되었다. 이러한 퇴적시기는 지금까지 발견된 가장 오래된 직접적인 빙하활동의 증거로서 이전의 고지자기 연구와도 일치한다. Bunthang 시퀀스는 아래에서부터 빙퇴석, 호성 퇴적물, 하천 퇴적물 그리고 다시 호성 퇴적물로 이루어지며 어떠한 단층운동의 증거도 발견되지 않는 점으로 미루어 볼 때 분지의 생성은 빙하의 하방침식에 의해서 만들어졌으며 빙하의 후퇴와 더불어 proglacial과 paraglacial 프로세스에 의해서 생성된 것으로 판단된다. 이 지역에 있어서 신생대의 활발한 지반 활동은 인더스 강의 구배를 변형시킴으로써 연구지역과 같은 국지적인 호소퇴적층의 활발한 퇴적을 용이하게 하였으며 또한 지반운동과 빙하의 침식에 의한 사면의 불안정성은 이러한 국지적 퇴적 작용을 더욱 촉발시켰을 것으로 판단된다. 이전의 연구와 본 연구의 결과로써 지난 제4기 동안 빙하의 활동이 약해진 것으로 보건데 지난 마지막 빙기 최성기를 정점으로 티벳고원에 커다란 빙상이 존재했다는 가설은 틀린 것으로 보인다. 이 지역에서 제4기 동안의 빙하 활동의 축소는 희말라야 산맥과 카라코람 산맥 중심의 급격한 융기로 인해 Indian monsoon의 유입이 줄어든 것에서 기인한 것으로 추측된다.

Keywords

References

  1. Aguirre, E. and Pasini, G., 1985, The Pliocene- Pleistocene boundary, Episode, 8, 116-120
  2. Balco, G. and Stone, J.O., 2007, A simple, internally consistent, and easily accessible means of calculating surface exposure ages or erosion rates from $^{10}Be$ and $^{26}Al$ measurements, Quaternary Geochronology, In press
  3. Benn, D.I. and Owen, L.A., 2002, Himalayan glacial sedimentary environments: a framework for reconstructing and dating former glacial extents in high mountain regions, Quaternary International, 97-98, 3-26
  4. Burbank, D.W. and Johnson, G.D., 1982, Intermontane basin development in the past 4 Myr in the north-west Himalaya, Nature, 298, 432-436 https://doi.org/10.1038/298432a0
  5. Burbank, D.W. and Tahirkheli, R.A.K., 1985, The magnetostratigraphy, fission-track dating, and stratigraphic evolution of the Peshawar intermontane basin, northern Pakistan, Geological Society of America Bulletin, 96, 539-552 https://doi.org/10.1130/0016-7606(1985)96<539:TMFDAS>2.0.CO;2
  6. Berggren, W.S., Hilgen, F.J., Langereis, C.G., Kent, D.V., Obradovich, J.D., Raffi, I., Raymo, M.E. and Shackleton, N.J, 1995, Late Neogene chronology: new perspectives in high-resolution stratigraphy, Geological Society of America Bulletin, 107, 1272-1287 https://doi.org/10.1130/0016-7606(1995)107<1272:LNCNPI>2.3.CO;2
  7. Burgisser, H.M., Gansser, A., and Pika, J., 1982, Late glacial lake sediments of the Indus Valley area, northwestern Himalayas, Eclogae Geologische Helvetica, 75, 51-63
  8. Cronin, V.S., 1989, Structural setting of the Skardu intermontane basin, Karakoram Himalaya, Pakistan, Geological Society of America Special Paper, 232, 183-201
  9. Cronin, V.S., Johnson, W.P., Johnson, N.M., and Johnson, G.D., 1989, Chronostratigraphy of the upper Cenozoic Bunthang sequence and possible mechanisms controlling base level in Skardu intermontane basin, Karakoram Himalaya, Pakistan, Geological Society of America Special Paper, 232, 295-309
  10. Dainelli, G., 1922, Studi sul Glaciale, in Relazione Scientifiche della Spedizione Italian de Filippinell'Himalaia, Caracorum e Turchestan Cinese (1913-14), Serei II, Resultati geologiiciegeografici, Zanichelli, Bologna
  11. Ding, Z., Rutter, N.W., and Liu, T., 1997, The onset of extensive loess deposition around the G/M boundary in China and its paleoclimatic implications, Quaternary International, 40, 53-60 https://doi.org/10.1016/S1040-6182(96)00061-4
  12. Granger, D.E. and Smith, A.L., 2000, Dating buried sediments using radioactive decay and muogenic production $^{26}Al$ and , Nuclear Instruments and Methods Physical Research, B172, 822-826
  13. Granger, D.E. and Muzikar, P.F., 2001, Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations, Earth and Planetary Science Letters, 188, 269-281 https://doi.org/10.1016/S0012-821X(01)00309-0
  14. Heisinger, B., Lal, D., Jull, A.J.T., Kubik, S., Ivy-Ochs, S., Knie, K., and Nolte, E., 2002, Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth and Planetary Science Letters, 200, 357-369 https://doi.org/10.1016/S0012-821X(02)00641-6
  15. Hewitt, K., 1989, The altitudinal organisation of Karakoram geomorphic processes and depositional environments, Zeitschrift fur Geomorphologie, 76, 9-32
  16. Hewitt, K., 1998, Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan, Geomorphology, 26, 47-80 https://doi.org/10.1016/S0169-555X(98)00051-8
  17. Hewitt, K., 1999, Quaternary moraines vs catastrophic avalanches in the Karakoram Himalaya, northern Pakistan, Quaternary Research, 51, 220-237 https://doi.org/10.1006/qres.1999.2033
  18. Kim, J.Y., 2005, Possibilities and prospective of the study on Landforms in Korea using cosmogenic isotope analysis, Journal of the Korean Geomorphological Association, 12(1), 117-132
  19. Kohl, C.P. and Nishiizumi, K., 1992, Chemical isolation of quartz for measurement of in situ produced cosmogenic nuclides, Geochemica et Cosmochemica Acta, 56, 3583-3587 https://doi.org/10.1016/0016-7037(92)90401-4
  20. Kuhle, M., 1985, Glaciation research in the Himalayas: a new ice age theory, Universitas, 27, 281-294
  21. Kuhle, M., 1988, Geomorphological findings on the build-up of Pleistocene glaciation in southern Tibet and on the 9problem of inland ice. Results of the Shisha Pangma and Mt. Everest, Geojournal, 17, 457-511
  22. Kuhle, M., 1991. Observations supporting the Pleistocene inland glaciation of High Asia: GeoJournal, 25, 131-231 https://doi.org/10.1007/BF02682190
  23. Kuhle, M., 1995. Glacial isostatic uplift of Tibet as a consequence of a former ice sheet, GeoJournal, 37, 431-449 https://doi.org/10.1007/BF00806933
  24. Lal, D., 1991, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth and Planetary Science Letters, 104, 429-439
  25. Miehe, G., Winiger, M., Bohner, J., and Yili, Z., 2000, Climatic diagram Map of High Asia 1: 4 000 000 000, Marburg
  26. Ni, J. and Barazangi, M., 1984, Seismotectonics of the Himalayan collision zone: Geometery of the underthrusting Indian plate beneath the Himalaya, Journal of Geophysical Research, 89, 1147-1163 https://doi.org/10.1029/JB089iB02p01147
  27. Oestrich, K., 1906, Die taler des nordwestlichen Himalaya: Gotha, GDR, Petermann's Mittheilungen, Erganzungsheft, 155
  28. Owen, L.A., 1988, Wet-sediment deformation of Quaternary and recent sediments in the Skardu Basin, Karakoram Mountains, Pakistan, in Croot, D.G. (ed.), Glaciotectonics: Forms and Processes, Balkema, Rotterdam, 123-148
  29. Owen, L.A. and Derbyshire, E., 1988, Glacially deformed diamictons in the Karakoram Mountains, northern Pakistan, in Croot, D.G. (ed.), Glaciotectonics: Forms and Processes, Balkema, Rotterdam, 149- 176
  30. Owen, L.A., Finkel, R.C., Barnard, P.L., Haizhou, Ma., Asahi, K., Caffee, M.W., and Derbyshire, E., 2005, Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by $^{10}Be cosmogenic radionuclide surface exposure dating, Quaternary Science Reviews, 24, 1391- 1411 https://doi.org/10.1016/j.quascirev.2004.10.014
  31. Parrish, R.R. and Tirrul, R., 1989, U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite U-Pb systematics, Geology, 17, 1076-1079 https://doi.org/10.1130/0091-7613(1989)017<1076:UPAOTB>2.3.CO;2
  32. Partridge, T.C. 1997, Reassessment of the position of the Plio-Pleistocene boundary: is there a case for lowering it to the Gauss-Matuyama Palaeomagnetic reversal?, Quaternary International, 40, 5-10 https://doi.org/10.1016/S1040-6182(96)00054-7
  33. Raymo, M.E., 1994, The initiation of Northern Hemisphere glaciaion, Annual Reviews of Earth and Planetary Sciences, 22, 353-383 https://doi.org/10.1146/annurev.ea.22.050194.002033
  34. Robinson, A.C., Yin, A., Manning, C.E., Harrison, T.M., Zhang, S.H., and Wang, X.F., 2004, Tectonic evolution of the north eastern Pamir: Constraints from the portion of the Cenozoic Kongur Shan extensional system, western China, Geological Society of America Bulletin, 116, 953-973 https://doi.org/10.1130/B25375.1
  35. Schafer, J.M., Tshudi, S., Zhizhong, Z., Sihao, W., Ivyochs, S., Wieler, R., Baur, H., Kubik, P.W., and Schluchter, C., 2002, The limited influence of glaciation in Tibet on global climate over the past 170,000 yr, Earth and Planetary Science Letters, 194, 287-297 https://doi.org/10.1016/S0012-821X(01)00573-8
  36. Searle, M.P., 1991, Geology and Tectonics of the Karakoram Mountains, John Wiley & Sons, Chichester, UK
  37. Seong, Y.B. and Kim, J.W., 2003, Application of in-situ produced cosmogenic 10Be and 26Al for estimating erosion rate and exposure age of tor and block stream detritus: case study from Mt. Maneo, South Korea, Journal of the Korean Geographical Society, 38(3), 389-399
  38. Seong, Y.B., Owen, L.A., Bishop, M., Bush, A., Copeland, L., Finkel, R.C., Kamp, U., Shroder, J.F., and Weeks, P., 2007a, Quaternary glacial history of the Central Karakoram, Quaternary Science Reviews, In review
  39. Seong, Y.B., Belden, D., Kamp, U., Owen, L.A., Bishop, M., Bush, A., Copeland, L., Finkel, R.C., Shroder, J.F., and Weeks, P., 2007b, Geomorphology of the Central Karakoram, Zeitschrift fur Geomorphologie, In review
  40. Seong, Y.B., Owen, L.A., Bishop, M., Bush, A., Copeland, L., Finkel, R.C., Kamp, U., Shroder, J.F., and Weeks, P., 2007c, Rates of bedrock incision along the Braldu gorge, the Central Karakoram, Geomorphology, In press
  41. Stone, J.O., 2000, Air pressure and cosmogenic isotope production, Journal of Geophysical Research, 105, 23753-23759 https://doi.org/10.1029/2000JB900181
  42. Zeitler, P.K., 1985, Cooling history of the NW Himalaya, Tectonics, 4, 127-151 https://doi.org/10.1029/TC004i001p00127