Advanced Membrane Systems for Seawater Desalination. Kinetics of Salts Crystallization from RO Brines Promoted by Polymeric Membranes

  • Curcio, Efrem (Department of Chemical Engineering and Materials, University of Calabria) ;
  • Obaidani, Sulaiman Al (Department of Chemical Engineering and Materials, University of Calabria) ;
  • Macedonio, Francesca (Department of Chemical Engineering and Materials, University of Calabria) ;
  • Profio, Gianluca Di (Department of Chemical Engineering and Materials, University of Calabria) ;
  • Gualtieri, Silvia (Department of Chemical Engineering and Materials, University of Calabria) ;
  • Drioli, Enrico (Department of Chemical Engineering and Materials, University of Calabria)
  • Published : 2007.06.30

Abstract

The reliability of innovative membrane contactors technology (i.e. Gas/Liquid Membrane Contactors, Membrane Distillation/Crystallization) is today increasing for seawater desalination processes, where traditional pressure-driven membrane separation units are routinely operated. Furthermore, conventional membrane operations can be integrated with membrane contactors in order to promote possible improvements in process efficiency, operational stability, environmental impact, water quality and cost. Seawater is the most abundant aqueous solution on the earth: the amount of dissolved salts covers about 3% of its composition, and six elements (Na, Mg, Ca, K, Cl, S) account for more than 90% of ionic species. Recent investigations on Membrane Distillation-Crystallization have shown the possibility to achieve significant overall water recovery factors, to limit the brine disposal problem, and to recover valuable salts (i.e. calcium sulphate, sodium chloride, magnesium sulphate) by combining this technology with conventional RO trains. In this work, the kinetics of $CaSO_4{\cdot}2H_2O,\;NaCl\;and\;MgSO_4{\cdot}7H_2O$ crystallization is experimentally investigated in order to improve the design of the membrane-based crystallization unit.

Keywords

References

  1. E. Curcio, A. Criscuoli, and E. Drioli, 'Membrane Crystallizers', Ind. Eng. Chem. Res., 40, 2679 (2001) https://doi.org/10.1021/ie000906d
  2. E. Curcio and E. Drioli, 'Membrane Distillation and Related Operations - A Review', Sep. Purif. Reviews, 34(1), 35 (2005) https://doi.org/10.1081/SPM-200054951
  3. M. Gryta, 'Concentration of NaCl solution by membrane distillation integrated with crystallization', Sep. Sci. Tech., 37, 3535 (2002) https://doi.org/10.1081/SS-120014442
  4. C. M. Tun, A. G. Fane, J. T. Matheicktal, and R. Sheikholeslami, 'Membrane distillation crystallization of concentrated salts - flux and crystal formation', J. Membrane Sci., 257, 144 (2005) https://doi.org/10.1016/j.memsci.2004.09.051
  5. D. M. Zarkadas and K. K. Sirkar, 'Antisolvent crystallization in porous hollow fiber devices', Chem. Eng. Science, 61, 5030 (2006) https://doi.org/10.1016/j.ces.2006.03.036
  6. C. Balarew, 'Solubilities in seawater-type systems: Some technical and environmental friendly applications, Pure & Appl. Chem., 65(2), 213 (1993) https://doi.org/10.1351/pac199365020213
  7. E. Drioli, E. Curcio, A. Criscuoli, and G. Di Profio, "Integrated system for recovery of $CaCO_3$, NaCl and $MgSO_4{\ast}7H_2O$ from nanofiltration retentate', J. Membrane Sci., 239, 27 (2004) https://doi.org/10.1016/j.memsci.2003.09.028
  8. R. Cohen-Adad, C. Balarew, S. Tepavitcharova, and D. Rabadjieva, 'Sea-water solubility phase diagram. Application to an extractive process', Pure Appl. Chem., 74(10), 1811 (2002) https://doi.org/10.1351/pac200274101811
  9. P. Dydo, M. Turek, J. Ciba, K. Wandachowicz, and J. Misztal, 'The nucleation kinetic aspects of gypsum nanofiltration membrane scaling', Desalination, 164, 41 (2004) https://doi.org/10.1016/S0011-9164(04)00154-7
  10. F. Alimi and A. Gadri, 'Kinetics and morphology of formed gypsum', Desalination, 166, 427 (2004) https://doi.org/10.1016/j.desal.2004.06.097
  11. S. Al-Jibbouri and J. Ulrich, 'The growth and dissolution of sodium chloride in a fluidized bed crystallizer', J. Cryst. Growth, 234, 237 (2002) https://doi.org/10.1016/S0022-0248(01)01656-6
  12. R. N. Shreve, 'Chemical Process Industries', p.224, Mc-Graw Hill, New York, NY (1955)
  13. S. Ramalingom, J. Podder, S. Narayana Kalkura, and G. Bocelli, 'Habit modification of epsomite in the presence of urea', J. Cryst. Growth, 247, 523 (2003) https://doi.org/10.1016/S0022-0248(02)01991-7
  14. S. Al-Jibbouri, C. Strege, and J. Ulrich, 'Crystallization kinetics of epsomite influenced by pH-value and impurities', J. Cryst. Growth, 236, 400 (2002) https://doi.org/10.1016/S0022-0248(01)02172-8