DOI QR코드

DOI QR Code

Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin

배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석

  • Kim, Joo-Cheol (Industrial Technology Research Institute, Chungnam National Univ.) ;
  • Kim, Jae-Han (Dept. of Civil Engrg., Chungnam National Univ.)
  • 김주철 (충남대학교부속 산업기술연구소) ;
  • 김재한 (충남대학교 토목공학과)
  • Published : 2007.05.31

Abstract

The exact resolution of channel initiation points is not so easy because of the dynamic behaviors of water movement on the hillslope. To this end, Kim, Joocheol and Kim, Jaehan(2007) have represented the channel network in real world basins for slope-area regimes using DEM. This study is its sequential content and then proposes the reliabilities of the hypothetical channel networks identified from DEM, which are assessed based on the geometric characteristics of drainage density and source-basin. The resulting drainage structures on the natural basin can be found to be depicted remarkably depending on the hypothetical channel network applied by slop-area threshold criterion. In addition, it is shown that there is a wonderful geometric similarity between the shapes of source- basin in a geomorphologically homogeneous region. Area threshold criterion could have restricted the shape of source-basin, so that it might bring about the incorrect drainage structures. But the hypothetical channel networks identified from DEM deserves special emphasis on expressing the space-filling structures nonetheless.

수로가 시작되는 지점의 정확한 위치를 찾는 것은 구릉지 사면상의 물의 동적거동으로 인하여 매우 어렵다. 이러한 목적을 위하여, 김주철과 김재한(2007)은 DEM을 이용한 경사와 면적 사이의 규모에 따른 거동특성에 따라 실제 유역내 수로망을 제시한 바 있다. 본 연구는 이들의 연구 성과의 연장으로서, 배수밀도와 수원유역의 기하학적 특성을 기반으로 하여 DEM으로부터 동정된 가설수로망의 신뢰성을 평가하여 보았다. 그 결과 경사-면적한계기준에 의한 가설수로망이 자연유역의 배수구조를 매우 잘 묘사하고 있음을 확인할 수 있었다. 또한 지형학적 동질성을 가진 지역내 수원유역의 형상들 사이에는 훌륭한 기하학적 상사성이 존재함을 추론할 수 있었다. 면적한계기준은 수원유역의 형상을 구속하여 왜곡된 배수구조를 야기할 수도 있었다. 그럼에도 불구하고 DEM으로부터 동정된 가설수로망들이 공간 채움 구조를 잘 표현하고 있는 점이 특히 주목된다.

Keywords

References

  1. 김재한(2005), 수문계의 수학적 모형, 선형계를 중심으로, 도서출판새론, 373-375
  2. 김주철, 김재한(2007), 'DEM을 이용한 수로망의 형태학적 표현', 한국수자원학회논문집, 40(4), 287-297 https://doi.org/10.3741/JKWRA.2007.40.4.287
  3. 김주철, 윤여진, 김재한(2005), 'Nash 모형의 지체시간을 이용한 GIUH유도', 한국수자원학회논문집, 38(10), 801-810 https://doi.org/10.3741/JKWRA.2005.38.10.801
  4. Abraham, A. D,(1984), 'Channel network: A geomorphological perspective', Water Resources Research, 20(2), 161-188 https://doi.org/10.1029/WR020i002p00161
  5. Bras, R. L.(1990), Hydrology, An introduction to hydrologic science, Addison Wesley, 574
  6. Brierley, G. J. and Fryirs(2005), Geomorpholgy and river management, Application of the river styles framework, Blackwell Publ, 22
  7. Brutsaert, W. and Nieber, J. (1977), 'Regionalized drought flow hydrographs from a matured glaciated plateau', Water Resources Research, 13(3), 637-643 https://doi.org/10.1029/WR013i003p00637
  8. Eagleson, P. S.(1970) Dynamic Hydrology, McGraw Hill
  9. Giannoni, F., Roth, G. and Rudari, R.(2005), 'A procedure for drainage network identification from geomorphology and its application to the prediction of the hydrologic response', Advances in Water Resources, 28, 567-581 https://doi.org/10.1016/j.advwatres.2004.11.013
  10. Gregory, K. J. and Walling, D. E.(1973), Drainage basin form and process, A geomorphological approach, Edward Arnold, 51
  11. Ijjasz-Vasquez, E. J. and Bras, R. L.(l995), 'Scaling regimes of local slope versus contributing area in digital elevation models', Geomorphology, 12, 299-311 https://doi.org/10.1016/0169-555X(95)00012-T
  12. La Barbera, P. and Rosso, R.(1989), 'On the fractal dimension of stream networks', Water Resources Research, 25(4), 735-741 https://doi.org/10.1029/WR025i004p00735
  13. Montgomery, D. R. and Dietrich, W. E.(1989), 'Source area, drainage density, and channel initiation', Water Resources Research, 25(8), 1907-1918 https://doi.org/10.1029/WR025i008p01907
  14. Montgomery, D. R. and Foufoula-Georgiou, E.(1993), 'Channel network source representation using digital elevation models', Water Resources Research, 29(12), 3925-3934 https://doi.org/10.1029/93WR02463
  15. O'Callaghan, J. F. and Mark, D. M.(1984), 'The extraction of drainage networks from digital elevation data', Computer Vision, Graphics, and Image Processing, 28, 324-344
  16. Rodriguez-Iturbe, I. and Valdes, J. B.(1979), 'The geomorphologic structure of hydrologic response', Water Resources Research, 15(6), 1409-1420 https://doi.org/10.1029/WR015i006p01409
  17. Rodriguez-Iturbe, I. and Rinaldo, A.(2003), Fractal river basins, Chance and self-organization, Cambridge, 27
  18. Shreve, R. L.(1966), 'Statistical law of stream numbers', Journal of Geology, 74, 17-37 https://doi.org/10.1086/627137
  19. Smart, J. S.(1972), 'Channel Networks', Advances in Hydroscience, 8, 305-346
  20. Strahler, A. N.(1964), 'Quantitative geomorphology of drainage basins and channel networks', pp. 4.39-4.76, In: Handbook of Applied Hydrology. McGraw-Hill
  21. Tarboton, D. G., Bras, R. L. and Rodriguez-Iturbe, I.(1988), 'The fractal nature of river networks', Water Resources Research, 24(8), 1317-1322 https://doi.org/10.1029/WR024i008p01317
  22. Tarboton, D. G., Bras, R. L. and Rodriguez-Iturbe, I.(1992) 'A physical basis for drainage density', Geomorphology, 5, 59-76 https://doi.org/10.1016/0169-555X(92)90058-V
  23. Turker, G. E., Catani, F., Rinaldo, A. and Bras, R. L.(2001) 'Statistical analysis of drainage density from digital terrain data', Geomorphology, 36, 187-202 https://doi.org/10.1016/S0169-555X(00)00056-8

Cited by

  1. Analysis of Spatial Variability of Local Slope by Means of Geographic Information System vol.21, pp.3, 2012, https://doi.org/10.5322/JES.2012.21.3.297