초록
국부 통계치에 근거한 서양금석문 영상향상 기법을 고안한다. 영상데이터는 배경과 정보의 두 영역으로 구분한다. 통계 및 함수적 분석을 통해 서양금석문 영상 대부분이 가우스 회색도분포임을 규명하고 분포 및 영역특성을 고려한 모델을 구현한다. 모델을 대상으로 국부정규화처리 알고리즘을 수식화하고 파라미터를 추출하며 이동창에서의 기능과 특성을 논의한다. 파라미터와 이동창의 크기를 조정하여 화소 회색도의 공간 분포를 변형하고 영역을 선별한다. 이 때 국부통계치는 알고리즘을 실현하는 유용한 근거로 활용된다. 알고리즘 적용에 의해 영역의 잡음과 불규칙한 분포 상태가 평활되는 동시에 영역 사이의 회색도 격차를 증대시켜 영상을 향상한다. 실험결과는 제안된 방식이 기존의 영상향상 기법보다 우수한 효과가 있음을 보여준다.
In this paper, we investigate an enhancement method for Western epigraphic images, which is based on local statistics. Image data is partitioned into two regions, background and information. Statistical and functional analyses are proceeded for image modeling. The Western epigraphic images, for the most part, have shown the Gaussian distribution. It is clarified that each region can be differentiated statistically. The local normalization process algorithm is designed on this model. The parameter is extracted and it‘s properties are verified with the size of moving window. The spatial gray-level distribution is modified and regions are differentiated by adjusting parameter and the size of moving window. Local statistics are utilized for realization of the enhancement, so that difference between regions can be enhanced and noise or speckles of region can be smoothed. Experimental results are presented to show the superiority of the proposed algorithm over the conventional methods.