DOI QR코드

DOI QR Code

MODELING UNCERTAINTY IN QUASI-HYDROSTATIC ISOTHERMAL SELF-GRAVITATING SLAB

  • Published : 2007.03.31

Abstract

The smoothed particle hydrodynamics (SPH) method is applied to construct the dispersion of fluctuations in quasi-hydrostatic configuration of an isothermal self-gravitating slab. The uncertainty of the implementation is evaluated, and a novel technique (acceleration error) is proposed to weaken this uncertainty. The two-fluid quasi-hydrostatic diffusion of small fluctuations is used to support the importance of the acceleration error. The results show that the uncertainty converges to a few percent by increasing of the SPH particle numbers. Considering the acceleration error weakens the uncertainty, and prohibits the serious dynamical consequences in slow dispersion of fluctuation in the quasi-hydrostatic evolution of the slab.

Keywords

References

  1. Boisse, P., Le Petit, F., Rollinde, E., Roueff, E., Pineau des Forets, G., Andersson, B. G., Gry, C., & Felenbok, P., 2005, A far UV study of interstellar gas towards HD 34078: High excitation H2 and small scale structure, Astron. Astrophys., 429, 509 https://doi.org/10.1051/0004-6361:20047135
  2. Freitag, M. & Benz, W., 2005, A Comprehensive Set of Simulations of High-Velocity Collisions Between Main-Sequence Stars, Mon. Not. R. Astron. Soc., 358, 1133 https://doi.org/10.1111/j.1365-2966.2005.08770.x
  3. Garcia-Senz, D. & Bravo, E., 2005, Type Ia Supernova Models Arising from Different Distributions of Igniting Points, Astron. Astrophys., 430, 585 https://doi.org/10.1051/0004-6361:20041628
  4. Katz, N., Weinberg, D. H., & Hernquist, L., 1996, Cosmological Simulations with TreeSPH, Astrophys. J. Suppl., 105, 19 https://doi.org/10.1086/192305
  5. Larson, R. B., 1981, Turblence and Star Formation in Molecular Clouds, Mon. Not. R. Astron. Soc., 194, 809 https://doi.org/10.1093/mnras/194.4.809
  6. Monaghan, J. J., 1982, Why Particle Methods Work?, SIAM J. Sci. Stat. Comput., 3, 422 https://doi.org/10.1137/0903027
  7. Monaghan, J. J., 1992, Smoothed Particle Hydrodynamics, Annu. Rev. Astron. Astrophys, 30, 543 https://doi.org/10.1146/annurev.aa.30.090192.002551
  8. Monaghan, J. J., 2002, SPH Compressible Turbulence, Mon. Not. R. Astron. Soc., 335, 843 https://doi.org/10.1046/j.1365-8711.2002.05678.x
  9. Monaghan, J. J. & Kocharyan, A., 1995, SPH simulation of multi-phase flow, Comput. Phys. Commun., 87, 225
  10. Murray, J. R., Truss, M. R., Foulkes, S. E., Haswell, C. A., & Manson, K. J., 2004, Hydrodynamic Modelling of Accretion Flows, Revista Mexicana de Astronomia y Astrofisica (RMXAA), 20, 166
  11. Myers, P. C., 1999, The Physics and Chemistry of the Interstellar Medium, Proceedings of the 3rd Cologne-Zermatt Symposium, edited by Ossenkopf, V., Stutzki, J., and Winnewisser, G., GCA-Verlag Herdecke, p. 227
  12. Nejad-Asghar, M., 2006, Simulation of Shock Waves by Smoothed Particle Hydrodynamics, in proceeding of 10th Asrtonomy Meeting in Iran, edited by Khakian, M., astro-ph/0601480
  13. Nejad-Asghar, M., & Ghanbari, J., 2003, Linear thermal instability and formation of clumpy gas clouds including ambipolar diffusion, Mon. Not. R. Astron. Soc., 345, 1323 https://doi.org/10.1046/j.1365-2966.2003.07053.x
  14. Nejad-Asghar, M. & Ghanbari, J., 2006, Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability, Astrophys. Space Sci., 302, 243 https://doi.org/10.1007/s10509-006-9049-4
  15. Rasio, F., Faber, J., Kobayashi, S., & Laguna, P., 2004, Relativistic SPH Calculations of Compact Binary Mergers, in proceeding of JGRG14, edited by Hikida, W., Sasaki, M., Tanaka, T., and Nakamura, T., astro-ph/0503007
  16. Shu, F., 1983, Ambipolar Diffusion in Self-Gravitating Isothermal Layers, Astrophys. J., 273, 202
  17. Sijacki, D., & Springel, V., 2006, Physical Viscosity in Smoothed Particle Hydrodynamics Simulations of Galaxy Clusters, Mon. Not. R. Astron. Soc., tmp, https://doi.org/10.1111/j.1365-2966.2006.10752.x
  18. Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A., 1987, Mass, luminosity, and line width relations of Galactic molecular clouds, Astrophys. J., 319, 730 https://doi.org/10.1086/165493
  19. Spitzer, L., 1942, Physics of Interstelar Medium, Astrophys. J., 95, 329 https://doi.org/10.1086/144407
  20. Springel, V., 2005, The cosmological simulation code GADGET-2, Mon. Not. R. Astron. Soc., 364, 1105 https://doi.org/10.1111/j.1365-2966.2005.09655.x
  21. Steinmetz, M., 1996, GRAPESPH: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE, Mon. Not. R. Astron. Soc., 278, 1005
  22. Vazquez-Sernadeni, E., Kim, J., Shadmehri, M., Ballesteros-Paredes, J., 2005, The Lifetimes and Evolution of Molecular Cloud Cores, Astrophys. J., 618, 344 https://doi.org/10.1086/425951