DOI QR코드

DOI QR Code

다상 준항성 중력렌즈의 우주론적 응용

COSMOLOGICAL APPLICATIONS OF MULTIPLE-IMAGE GRAVITATIONALLY LENSED QUASARS

  • 발행 : 2007.03.31

초록

Quasars at cosmological distances can be gravitationally lensed by galaxies into two or more images. The probability of this lensing and the angular separation between the images depend on the geometry and the expansion history of the universe as well as the lensing galaxies. The time delay between lensed images is also a direct indicator of the size of the universe. I review these cosmological applications of multiple-image gravitationally lensed quasars to determine or constrain the cosmological parameters.

키워드

참고문헌

  1. 박명구, 2001, 약한 중력렌즈와 그 응용, 새물리, 42, 1
  2. Bernstein, G. & Fischer, P., 1999, Values of H_0 from Models of the Gravitational Lens 0957+561, AJ, 118, 14 https://doi.org/10.1086/300949
  3. Biggs, A. D., Browne, I. W. A., Helbig, P., Koopmans, L. V. E., Wilkinson, P. N., & Perley, R. A., 1999, Time Delay for the Gravitational Lens System B0218+357, MNRAS, 304, 349 https://doi.org/10.1046/j.1365-8711.1999.02309.x
  4. Browne, I. W. A., Wilkinson, P. N., Jackson, N. J. F. et al., 2003, The Cosmic Lens All-Sky Survey - II. Gravitational Lens Candidate Selection and Follow-up, MNRAS, 341, 13 https://doi.org/10.1046/j.1365-8711.2003.06257.x
  5. Burud, I., Courbin, F., Magain, P., et al., 2002, An Optical Time-delay for the Lensed BAL Quasar HE 2149-2745, A&A, 383, 71
  6. Burud, I., Hjorth, J., Courbin, F., et al., 2002, Time Delay and Lens Redshift for the Doubly Imaged BAL Quasar SBS 1520+530, A&A, 391, 481 https://doi.org/10.1051/0004-6361:20020856
  7. Burud, I., Hjorth, J., Jaunsen, A. O., et al., 2000, An Optical Time Delay Estimate for the Double Gravitational Lens System B1600+434, ApJ, 544, 117 https://doi.org/10.1086/317213
  8. Chae, K.-H., 1999, New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant, ApJ, 524, 582
  9. Chae, K.-H., 2003, The Cosmic Lens All-Sky Survey: statistical strong lensing, cosmological parameters, and global properties of galaxy populations, MNRAS, 346, 746 https://doi.org/10.1111/j.1365-2966.2003.07092.x
  10. Chiba, M. & Yoshii, Y., 1997, Do Lensing Statistics Rule Out a Cosmological Constant?, ApJ, 489, 485 https://doi.org/10.1086/304831
  11. Chiba, M. & Yoshii, Y., 1999, New Limits on a Cosmological Constant from Statistics of Gravitational Lensing, ApJ, 510, 42 https://doi.org/10.1086/306575
  12. Choi, Y.-Y., Park, C., & Vogeley, M. S., 2006, Internal and Collective Properties of Galaxies in the Sloan Digital Sky Survey, astro-ph/0611607
  13. Cohn, J. D. & Kochanek, C. S., 2004, The Effects of Massive Substructures on Image Multiplicities in Gravitational Lenses, ApJ, 608, 25 https://doi.org/10.1086/392491
  14. Corrigan, R. T., Irwin, M. J., Arnaud, J., et al., 1991, Initial light curve of Q2237 + 0305, AJ, 102, 34 https://doi.org/10.1086/115856
  15. Courbin, F., 2003, Quasar Lensing: the Observer's Point of View, astro-ph/0304497
  16. Dev, A., Jain, D., & Mahajan, S., 2004, Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply-Imaged Systems in the Class Statistical Sample, International Journal of Modern Physics D, 13, 1005 https://doi.org/10.1142/S0218271804004979
  17. Faber, S. M. & Jackson, R. E., 1976, Velocity Dispersions and Mass-to-light Ratios for Elliptical Galaxies, ApJ, 204, 668
  18. Fassnacht, C. D., Xanthopoulos, E., Koopmans, L. V. E., & Rusin, D., 2002, A Determination of H0 with the CLASS Gravitational Lens B1608+656. III. A Significant Improvement in the Precision of the Time Delay Measurements, ApJ, 581, 823 https://doi.org/10.1086/344368
  19. Fischer, P., Bernstein, G., Rhee, G., & Tyson, J. A., 1997, The Mass Distribution of the Cluster 0957+561 From Gravitational Lensing, AJ, 113, 521 https://doi.org/10.1086/118272
  20. Folkes, S., Ronen, S., Price, I., et al., 1999, The 2dF Galaxy Redshift Survey: Spectral Types and Luminosity Functions, MNRAS, 308, 459 https://doi.org/10.1046/j.1365-8711.1999.02721.x
  21. Freedman, W. L., Madore, B. F., Gibson, B. K., et al., 2001, Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, ApJ, 553, 47 https://doi.org/10.1086/320638
  22. Fukugita, M. & Turner, E. L., 1991, Gravitational Lensing Frequencies - Galaxy Cross-sections and Selection Effects, MNRAS, 253, 99
  23. Fukugita, M., Futamase, T., & Kasai, M., 1990, A Possible Test for the Cosmological Constant with Gravitational Lenses, MNRAS, 246, 24
  24. Fukugita, M., Futamase, T., Kasai, M., & Turner, E. L., 1992, Statistical Properties of Gravitational Lenses with a Nonzero Cosmological Constant, ApJ, 393, 3 https://doi.org/10.1086/186444
  25. Gil-Merino, R., Wisotzki, L., & Wambsganss, J., 2002, The Double Quasar HE1104-1805: A Case Study for Time Delay Determination with Poorly Sampled Lightcurves, A&A, 381, 428
  26. Gott, J.-R., Park, M.-G., & Lee, H.-M., 1989, Setting Limits on q0 Using Gravitational Lensing, ApJ, 338, 1
  27. Grogin, N. A. & Narayan, R., 1996a, A New Model of the Gravitational Lens 0957+561 and a Limit on the Hubble Constant, ApJ, 464, 92 https://doi.org/10.1086/177302
  28. Grogin, N. A. & Narayan, R., 1996b, A New Model of the Gravitational Lens 0957+561 and a Limit on the Hubble Constant: Erratum, ApJ, 473, 570
  29. Haarsma, D. B., Hewitt, J. N., Lehar, J., & Burke, B. F., 1997, The 6 Centimeter Light Curves of B0957+561, 1979 - 1994: New Features and Implications for the Time Delay, ApJ, 479, 102
  30. Hartwick, F. D. A. & Schade, David 1990, The Space Distribution of Quasars, ARAA, 28, 437 https://doi.org/10.1146/annurev.aa.28.090190.002253
  31. Hewitt, A. & Burbidge, G., 1987, A New Optical Catalog of Quasi-stellar Objects, ApJS, 63, 1
  32. Hewitt, A. & Burbidge, G., 1989, The First Addition to the New Optical Catalog of Quasi-stellar Objects, ApJS, 69, 1
  33. Hinshaw, G. & Krauss, L. M., 1987, Gravitational Lensing by Isothermal Spheres with Finite Core Radii - Galaxies and Dark Matter, ApJ, 320, 468
  34. Hjorth, J., Burud, I., Jaunsen, A. O., et al., 2002, The Time Delay of the Quadruple Quasar RX J0911.4+0551, ApJL, 572, L11 https://doi.org/10.1086/341603
  35. Im, M., Griffiths, R. E., & Ratnatunga, K. U., 1997, A Measurement of the Cosmological Constant Using Elliptical Galaxies as Strong Gravitational Lenses, ApJ, 475, 457 https://doi.org/10.1086/303583
  36. Impey, C. D., Falco, E. E., Kochanek, C. S., Leha' r, J., McLeod, B. A., Rix, H.-W., Peng, C. Y. & Keeton, C. R., 1998, An Infrared Einstein Ring in the Gravitational Lens PG 1115+080, ApJ, 509, 551
  37. Inada, N., Oguri, M., Becker, R. H., et al., 2007, Two New Gravitationally Lensed Double Quasars from the Sloan Digital Sky Survey, AJ, 133, 206 https://doi.org/10.1086/509702
  38. Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedrzejewski, R. I., 1989, Photometric Variations in the Q2237 + 0305 System - First Detection of a Microlensing Event, AJ, 98, 1989
  39. Jaroszy?ki, M., Wambsganss, J., & Paczy?ki, B., 1992, Microlensed Light Curves for Thin Accretion Disks around Schwarzschild and Kerr Black Holes, ApJL, 396, L65 https://doi.org/10.1086/186518
  40. Keeton, C. R., Gaudi, B. S., & Petters, A. O., 2005, Identifying Lenses with Small-Scale Structure. II. Fold Lenses, ApJ, 635, 35 https://doi.org/10.1086/497324
  41. Kochanek, C. S., 1993, The Analysis of Gravitational Lens Surveys. II. Maximum Likelihood Models and Singular Potentials, ApJ, 419, 12 https://doi.org/10.1086/173455
  42. Kochanek, C. S., 1996a, Gravitational Lenses and the Structure of Galaxies, IAU Symp. 173: Astrophysical Applications of Gravitational Lensing, 173, 177 (astro-ph/9510075)
  43. Kochanek, C. S., 1996b, Is There a Cosmological Constant?, ApJ, 466, 638 https://doi.org/10.1086/177538
  44. Kochanek, C. S., 2005, in Saas-Fee Advanced Course 33, Gravitational Lensing: Strong, Weak and Micro (Springer)
  45. Koopmans, L. V. E., de Bruyn, A. G., Xanthopoulos, E., & Fassnacht, C. D., 2000, A Time-delay Determination from VLA Light Curves of the CLASS Gravitational Lens B1600+434, A&A, 356, 391
  46. Kundic' , T., Turner, E. L., Colley, W. N., Gott, J. R., Rhoads, J. E., Wang, Y., Bergeron, L. E., Gloria, K. A., Long, D. C., Malhotra, S., & Wambsganss, J., 1997, A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's Constant, ApJ, 482, 75 https://doi.org/10.1086/304147
  47. Lauer, T. R. 1985, High-resolution Surface Photometry of Elliptical Galaxies, ApJS, 57, 473
  48. Lee, H.-A. & Park, M.-G., 1994, Statistical Properties of Gravitational Lensing in Cosmological Models with Cosmological Constant, JKAS, 27, 103
  49. Lovell, J. E. J., Jauncey, D. L., Reynolds, J. E., Wieringa, M. H., King, E. A., Tzioumis, A. K., McCulloch, P. M., & Edwards, P. G., 1998, The Time Delay in the Gravitational Lens PKS 1830-211, ApJL, 508, L51
  50. Lupton, R., 1993, Statistics in Theory and Practice (Princeton Univ. Press)
  51. Maoz, D. & Rix, H.-W., 1993, Early-Type Galaxies, Dark Halos, and Gravitational Lensing Statistics, ApJ, 416, 425
  52. Mitchell, Jonathan L., Keeton, Charles R., Frieman, Joshua A., & Sheth, Ravi K., 2005, Improved Cosmological Constraints from Gravitational Lens Statistics, ApJ, 622, 81 https://doi.org/10.1086/427910
  53. Moreau, O., Libbrecht, C., Lee, D.-W., & Surdej, J., 2005, Accurate Photometric Light Curves of the Lensed Components of Q2237+0305 Derived with an Optimal Image Subtraction Technique: Evidence for Microlensing in Image A, A&A, 436, 479 https://doi.org/10.1051/0004-6361:20041887
  54. Myers, S. T., Jackson, N. J., Browne, I. W. A., et al., 2003, The Cosmic Lens All-Sky Survey - I. Source Selection and Observations, MNRAS, 341, 1 https://doi.org/10.1046/j.1365-8711.2003.06256.x
  55. Ostensen, R., Refsdal, S., Stabell, R., et al. 1996, Monitoring of the Einstein Cross with the Nordic Optical Telescope., A&A, 309, 59
  56. Ostriker, J. P. & Steinhardt, P. J., 1995, The Observational Case for a Low Density Universe with a Non-Zero Cosmological Constant, Nature, 377, 600
  57. Park, M.-G., 1996, Gravitational Lensing Statistics in a Flat Universe', Journal of Korean Physical Society, 29, 664
  58. Park, M.-G. & Gott, J. R., 1997, Curvature of the Universe and Observed Gravitational Lens Image Separations versus Redshift, ApJ, 489, 476
  59. Park, M.-G. & Han, C., 2001, Gravitational Microlensing, JKAS, 34, 81
  60. Perlmutter, S., Aldering, G., Goldhaber, G., et al., 1999, Measurements of Omega and Lambda from 42 High-Redshift Supernovae, ApJ, 517, 565
  61. Pooley, D., Blackburne, J. A., Rappaport, S., Schechter, P. L., & Fong, W., 2006, A Strong X-Ray Flux Ratio Anomaly in the Quadruply Lensed Quasar PG 1115+080, ApJ, 648, 67 https://doi.org/10.1086/505860
  62. Rauch, K. P. & Blandford, R. D., 1991, Microlensing and the Structure of Active Galactic Nucleus Accretion Disks, ApJL, 381, L39 https://doi.org/10.1086/186191
  63. Refsdal, S., 1964, On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect, MNRAS, 128, 307 https://doi.org/10.1093/mnras/128.4.307
  64. Riess, Adam G., Filippenko, Alexei V., Challis, Peter, et al., 1998, Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, AJ, 116, 1009 https://doi.org/10.1086/300499
  65. Schechter, P., 1976, An Analytic Expression for the Luminosity Function for Galaxies., ApJ, 203, 297 https://doi.org/10.1086/154079
  66. Schechter, P. L., Bailyn, C. D., Barr, R. et al., 1997, The Quadruple Gravitational Lens PG 1115+080: Time Delays and Models, ApJL, 475, L85 https://doi.org/10.1086/310478
  67. Schneider, D. P., Turner, E. L., Gunn, J. E., Hewitt, J. N., Schmidt, M., & Lawrence, C. R., 1988, High-resolution CCD Imaging and Derived Gravitational Lens Models of 2237+0305, AJ, 95, 1619
  68. Schneider, P., Kochanek, C. S., & Wambsganss, J., 2006, Saas-Fee Advanced Course 33, Gravitational Lensing: Strong, Weak and Micro (Springer)
  69. Treu, T. & Koopmans, L. V. E., 2002, The Internal Structure of the Lens PG1115+080: Breaking Degeneracies in the Value of the Hubble Constant, MNRAS, 337, L6 https://doi.org/10.1046/j.1365-8711.2002.06107.x
  70. Tully, R. B. & Fisher, J. R., 1977, A New Method of Determining Distances to Galaxies, A&A, 54, 661
  71. Turner, E. L., 1990, Gravitational Lensing Limits on the Cosmological Constant in a Flat Universe, ApJL, 365, L43 https://doi.org/10.1086/185884
  72. Turner, E. L., Ostriker, J. P., & Gott, J. R., III 1984, The Statistics of Gravitational Lenses - The Distributions of Image Angular Separations and Lens Redshifts, ApJ, 284, 1
  73. Vakulik, V., Schild, R., Dudinov, V., Nuritdinov, S., Tsvetkova, V., Burkhonov, O., & Akhunov, T., 2006, Observational Determination of the Time Delays in Gravitational Lens System Q2237+0305, A&A, 447, 905 https://doi.org/10.1051/0004-6361:20053574
  74. Walsh, D., Carswell, R. F., & Weymann, R. J., 1979, 0957 + 561 A, B - Twin Quasistellar Objects or Gravitational Lens, Nature, 279, 381
  75. Weymann, R. J., Latham, D., Roger, J., et al., 1980, The Triple QSO PG1115+08 - Another Probable Gravitational Lens, Nature, 285, 641
  76. Witt, Hans J., Mao, S., & Schechter, P. L., 1995, On the Universality of Microlensing in Quadruple Gravitational Lenses, ApJ, 443, 18 https://doi.org/10.1086/175499
  77. Wozniak, P. R., Udalski, A., Szymanski, M., Kubiak, M., Pietrzynski, G., Soszynski, I., & Zebrun, K., 2000, The Optical Gravitational Lensing Experiment: A Hunt for Caustic Crossings in QSO 2237+0305, ApJL, 540, L65 https://doi.org/10.1086/312867
  78. Yoon, S.-Y. & Park, M.-G., 1996, Statistics of Gravitational Lensing by a Galaxy in Cluster or in Field, JKAS, 29, 119
  79. York, T., Jackson, N., Browne, I. W. A., Wucknitz, O., & Skelton, J. E., 2005, The Hubble Constant from the Gravitational Lens CLASS B0218+357 Using the Advanced Camera for Surveys, MNRAS, 357, 124 https://doi.org/10.1111/j.1365-2966.2004.08618.x