Surface Crack Evaluation Method in Concrete Structures

콘크리트 구조물의 표면 균열 평가 기법

  • 이방연 (한국과학기술원 건설 및 환경공학과) ;
  • 이성태 (충청대학 토목공학과) ;
  • 김진근 (한국과학기술원 건설 및 환경공학과)
  • Published : 2007.04.30

Abstract

Cracks in concrete structures should be measured to periodically assess potential problems in durability and serviceability. Conventional crack measurement systems depend on visual inspections and manual measurements of the crack features such as width, length, and direction using microscope and crack gage. However, conventional methods take long time as well as manpower, and lack quantitative objectivity resulted by inspectors. In this study, an evaluation technique for concrete surface cracks is developed using image processing and artificial neural network. Developed technique consists of three major parts: (1) crack detection (2) crack analysis and (3) pattern recognition. To examine validity of the technique developed in this study, crack analyzing tests were performed on the images obtained from various types of concrete surface cracks. The test results revealed that the system is highly effective in automatically analyzing concrete surface cracks in terms of features and patterns of cracks.

콘크리트 구조물에 발생한 균열은 내구성과 사용성 측면의 문제가 발생할 수 있기 때문에 정기적으로 관리하여야 한다. 대부분의 균열 측정은 균열 현미경과 균열 게이지와 같은 장비를 이용하여 균열의 폭, 길이, 방향 등과 같은 균열의 특징을 육안조사나 수작업에 의해 수행되고 있다. 그러나 기존의 방법들은 시간과 인력이 많이 필요할 뿐만 아니라 계측자의 주관이 개입될 여지가 많다. 따라서 이 연구에서는 이미지 프로세싱과 인공신경회로망을 이용하여 콘크리트 표면 균열 평가 기법을 제시하고자 한다. 개발된 기법은 세부분(균열 검출, 균열 분석, 균열 패턴인식)으로 나누어진다. 개발된 기법의 유효성을 검증하기 위하여 실험을 수행하였고, 실험 결과 개발된 기법은 콘크리트 표면 균열을 효과적으로 검출, 분석할 수 있었고, 5가지 균열 패턴을 정확히 인식하였다.

Keywords

References

  1. G. D. Schutter, 'Advanced monitoring of cracked structures using video microscope and automated image analysis,' NDT & E International : Independent Nondestructive Testing and Evaluation, Vol. 35, No.4, pp. 209-212, (2002) https://doi.org/10.1016/S0963-8695(01)00042-1
  2. B. G. Batchelor and S. M. Cotter, 'Detection of cracks using image processing algorithms implemented in hardware,' (from Image and Vision Computing 1983) SPIE Milestone Series MS, Vol. 97, pp. 413-421, (1994)
  3. T. Doihara, K. Hirono and K. Oda, 'Crack measuring system based on hierarchical image processing technique)' International Archives of Photogrammetry and Remote Sensing, Vol. 29, No.5, pp. 155-159, (1993)
  4. A. Ito, Y. Aoki and S. Hashimoto, 'Accurate extraction and measurement of fine cracks from concrete block surface image,' IEEE Industrial Electronics Society, Vol. 3, pp. 2202-2207, (2002)
  5. P. C. Tung, Y. R. Hwang and M. C. Wu, 'The development of a mobile manipulator imaging system for bridge crack inspection,' Automation in Construction, Vol. 11, No.6, pp. 717-729, (2002) https://doi.org/10.1016/S0926-5805(02)00012-2
  6. Z. Liu, S. A. Suandi, T. Ohashi and T. Ejima, 'A tunnel crack detection and classification systems based on image processing,' Proceedings of SPIE- The International Society for Optical Engineering, No. 4664, pp. 145-152, (2002)
  7. 鹿島建設技術研究所年報, 'Study of a method of measuring concrete cracks using computer image processing,' pp. 21-26, (1995)
  8. A. Ammouche, J. Riss, D. Breysse, and J. Marchand, 'Image analysis for the automated study of micorcracks in concrete,' Cement and Concrete Composities, Vol. 23, pp. 267-278, (2001) https://doi.org/10.1016/S0958-9465(00)00054-8
  9. N. A. Otsu, 'Threshold selection method from gray-level histogram,' IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No.1, pp. 62-66, (1979)
  10. P. Stroeven, 'Some aspects of the micromechanics of concrete,' Ph. D. Thesis, University of Delft, (1973)
  11. P. Stroeven, 'Structural investigation of concrete by means of stereological technics,' Rilem Seminar Proceedings, Vol. 3, pp. 52-69 & 173-185, (1973)
  12. D. J. C. MacKay, 'Bayesian interpolation,' neural computation, Vol. 4, No.3, pp. 415-447, (1992) https://doi.org/10.1162/neco.1992.4.3.415
  13. F. D. Foresee, and M. T. Hagan, 'Gauss-Newton approximation to bayesian regularization,' Proceedings of the 1997 International Joint Conference on Neural Networks, pp. 1930-1935, (1997)