복제 산양(진순이)의 체세포 핵이식에 의한 Re-Cloning에 관한 연구

Re-Cloning by Somatic Cell Nuclear Transfer from a Cloned Korean Native Goat

  • 정수영 (진주산업대학교 동물생명과학과.동물생명산업연구센터) ;
  • 박희성 (진주산업대학교 동물생명과학과.동물생명산업연구센터)
  • Jung, S.Y. (Department of Animal Science and Biotechnology & RAIRC, Jinju National University) ;
  • Park, H.S. (Department of Animal Science and Biotechnology & RAIRC, Jinju National University)
  • 발행 : 2007.06.30

초록

본 연구는 재래 산양의 체세포 핵이식에 의하여 생산한 복제 산양(진순이)의 조직으로부터 공여 핵을 배양하여 다시 핵이식을 실시하여 재복제에 따른 융합율과 분할율, 이식 후의 수태율 등을 조사하여 재복제 가능성 여부를 검토하기 위하여 실시하였다. 공여 세포는 귀 유래 섬유아세포를 분리 배양하여 사용하였으며, 체내 성숙 난자는 성숙한 미경산 재래 산양에 과배란을 유기하여 외과적인 방법으로 난관 관류를 통해 회수하여 핵이식을 실시하였다. 핵이식란의 융합은 전기 자극 방법으로 실시되었으며, 융합이 완료된 핵이식란의 활성화 처리는 핵이식 3시간 후에 Ionomycin과 6-DMAP를 병용 처리하여 실시하였다. 복제 수정란의 체외 배양은 0.8% BSA가 첨가된 mSOF 배양액으로 $2{\sim}4$ 세포기까지 체외 배양을 실시한 다음 수란 산양의 난관에 외과적으로 이식하였다. 임신 진단은 발정일로 부터 제 30일과 60일째에 초음파 임신 진단기로 임신 진단을 실시하고, Progesterone농도는 이식 후 21일째와 63일째의 혈액을 채취하여 RIA 방법으로 검사하였다. 체세포 핵이식에 의한 재복제란(2nd)을 전기 자극에 의한 융합을 1회 실시하였을 때 융합율은 65.9%로서 복재란(1st)의융합을 51.0%보다 유의적(p<0.05)으로 높았으며, 2회 전기자극을 실시하였을 때는 각각 77.4 및 63.9%로서 차이가 없었으나, 3회 재복제란 융합율도 87.5%로서 복제란의 70.1%와 유의적인 차이는 없었다. 재복제 융합란의 분할율은 56.0%로j 복제 융합란의 77.7%보다 낮았다. 재복제란을 수란 산양에 이식을 실시하여 임신 제21일과 63일째 임신 진단을 실시하였을 때 수태율을 수란 산양의 발정유기 방법에 따른 수태율에 있어서 재복제란의 21일째 수태율은 39.3%로서 복제란의 17.4%보다 높았으며, 63일째는 각각 14.3 및 13.0%로서 복제 회수에 따른 수태율의 차이는 없었다. 수란 산양의 발정 유기 방법에 있어서 제 21일째에 자연발정이 발현된 수란 산양의 수태율은 45.4%로서 인위적으로 발정 동기화를 유도한 수란 산양의 35.3%보다 높았다. 제 63일째는 각각 18.2 및 11.8%로서 차이가 없었다. 이상의 결과로 볼 때 재래 산양의 체세포 핵이식에 의한 복제효율에 있어서는 복재와 재복제간에 차이가 없었으며, 수란산양의 발정 동기화 방법에 따른 수태율에 있어서도 차이가 없었다. 그러나 앞으로 재래 산양의 복제 효율 개선을 위해서는 양질 난자의 다량 확보, 산양 수정란의 체외 배양 체계 확립, 이식 기법의 개발 등에 관한 후속 연구가 이루어져야 할 것으로 생각된다.

The present study was conducted to examine some factors affecting in vitro development and fecundity of embryos recloned with somatic cell nuclear transfer (SCNT). Fibroblast cells retrieved from the ear of a 3-week-old, cloned Korean goat (Jinsoonny) were used as karyoplast donors and serum-starvation was conducted in tissue culture medium (TCM)-199 supplemented with 0.5% FBS. Recipient oocytes were surgically collected by flushing the oviducts 35 h after hCG injection following FSH priming. The zonae pellucidae of the oocytes were partially perforated with a laser drill and a donor cell was transferred into an enucleated oocyte. The couplets were electrically fused and activated by ionomycin (5 min) and 6-DMAP (4 h). The reconstructed embryos were cultured in mSOF medium containing 0.8% BSA at $39^{\circ}C$ in an atmosphere of 5% $CO_2$, 5% $%O_2$, 90% $N_2$ for 12 to 15 h. Re-cloned embryos (2- to 4-cell stages) were surgically transferred into the oviducts of the recipients and pregnancy was subsequently diagnosed by progesterone assay and ultrasound on Days 21 and 63 of pregnancy. The fusion rate following 1st fusion pulse was higher (p<0.05) in 2nd cloning (65.9%) compared to 1st cloning (51.0%), but it was not different in the other groups. The rate of cleavage after fusion was significantly higher (p<0.05) in 1st (77.7%) than in 2nd cloning (56.0%). A total of 175 re-cloned embryos were transferred into 28 recipients. On day 21 and 60 after transfer, 11 (39.3%) and 4 recipients (17.4%) were pregnancy, respectively. In comparison of pregnancy rate by estrous synchronization, a total of 66 and 109 re-cloned embryos were transferred into 11 recipients in natural estrus and 17 recipients in induced estrus, respectively. Five (45.4%) and 2 recipients (18.2%) in natural estrus were pregnant on days 21 and 63 while 6 (35.3%) and 2 (11.8%) recipients in induced estrus were pregnant, respectively. These results show that recloning of goat can be achieved by SCNT and estrous synchronization between donor and recipient animals may be one of the major factors affecting success rate.

키워드

참고문헌

  1. Apimeteetumrong M, Thuangsanthia A, Leingcharoen N, Yiengvisavakul V, Harintharanon A, Kunavongkrit A, Sumretprasong J, Vignon X and Techakumphu M. 2004. The effect of activation protocols on the development of cloned goat embryos. Theriogenology, 66:1529-1534
  2. Baguisi A, Behboodi E, Melican D, Pollock J, Destrempes M, Cammuso C, Williams J, Nims S, Porter C, Midura P, Palacios M, Ayres S, Denniston R, Hayes M, Ziomek C, Meade H, Godke R, Gavin W, Overstrom E and Echelard Y. 1999. Production of goats by somatic cell nuclear transfer. Nature Biotechnology, 17:456-461 https://doi.org/10.1038/8632
  3. Begin I, Bhatia B, Rao K, Keyston R, Pierson JT, Neveu N, Cote F, Leduc M, Bilodeau AS, Huang YJ, Lazaris A, Baldassarre H, Wang Band Karatzas CN. 2004. Pregnancies resulted from goat embryos produced by couplets in the presence of lectin. Reprod. Fert. Dev., 16:136 (abstr)
  4. Butler RE, Meiican D, Hawkins N, Jellerette T, Nims S, Graslie K and Gavin W. 2004. Effects of cycloheximide on caprine somatic cell nuclear transfer embryo and fetal development. Reprod. Fertil. Dev., 16: 138
  5. Campbell KHS, McWhir J, Ritchie WA and Wilmut I. 1996. Sheep cloned by nuclear transfer from a culture cell line. Nature, 380:64-66 https://doi.org/10.1038/380064a0
  6. Echelard Y, Memili E, Ayres SL, O'Coin M, Chen LH, Meade HM and Behboodi E. 2004. Comparison of the developmental potential of caprine nuclear transfer embryos derived from in vitro and in vivo matured oocytes. Reprod. Fertil. Dev., 16:140
  7. Hill JR, Roussel AJ, Cibelli JB, Edwards JF, Hooper NL, Miller MW, Thompson JA, Looney CR, Westhusin ME, Robl JM and Stice SL. 1999. Clinical and pathological features of cloned transgenic calves and fetuses (13 case studies). Theriogenology, 51:1451-1465 https://doi.org/10.1016/S0093-691X(99)00089-8
  8. Hill JR, Winger OA, Long CR, Loonry CR, Thompson JA and Westhusin ME. 2000. Development rates of male bovine nuclear transfer embryo derived from adult and fetal cell. Biol. Reprod., 62:1135-1140 https://doi.org/10.1095/biolreprod62.5.1135
  9. Keefer CL, Baldassarre H, Keyston R, Wang B, Bhatia B, Bilodeau AS, Zhou JF, Leduc M, Downey BR, Lazaris A and Karatzas CN. 2001. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod., 64:849-856 https://doi.org/10.1095/biolreprod64.3.849
  10. Keefer CL, Keyston R, Lazaris A, Bhatia B, Begin I, Bilodeau AS, Zhou FJ, Kafidi N, Wang B, Baldassarre Hand Karatzas CN. 2002. Production of cloned goats after nuclear transfer using adult somatic cells. Biol. Reprod., 66: 199-203 https://doi.org/10.1095/biolreprod66.1.199
  11. Melican D, Butler R, Hawkins N, Chen LH, Hayden E, Destrempes M, Williams J, Lewis T, Behboodi E, Ziomek C, Meade H, Echelard Y and Gavin W. 2005. Effect of serum concentration, method of trypsinization and fusion/activation utilizing transfected fetal cells to generate transgenic dairy goats by somatic cell nuclear transfer. Theriogenology, 63:1549-1563 https://doi.org/10.1016/j.theriogenology.2004.05.029
  12. Melican D, Butler R, Hawkins N, Nims S, Buzzel N, Jellerette T and Gavin W. 2004. Estrus synchronization of dairy goats utilized as recipients for caprine nuclear transfer embryos. Reprod. Fertil. Dev., 16:151
  13. Park HS, Jin JI, Hong SP, Lee. JS and Jung JY. 2001. Effect of laser drilling on blastocyst hatching and pregnancy rates from in vitro produced cattle embryos. Theriogenology, 55:352
  14. Reggio BC, James AN, Green HL, Gavin WG, Behboodi E, Echelard Y and Godke RA. 2001. Cloned transgenic offspring resulting from somatic cell nuclear transfer in the goat: Oocytes derived from both follicle-stimulating hormone- stimulated and nonstimulated abattoir-derived ovaries. Biol. Reprod., 65: 1528-1533 https://doi.org/10.1095/biolreprod65.5.1528
  15. Shen PC, Lee SN, Wu JS, Huang JC, Chu FH, Chang CC, Kung JC, Lin HH, Chen LR, Shiau JW, Yen NT and Cheng WTK. 2006. The effect of electrical field strength on activation and development of cloned caprine embryos. Anim. Reprod. Sci., 92:310-320 https://doi.org/10.1016/j.anireprosci.2005.05.025
  16. Walker SK, Hartwich KM and Seamark RF. 1996. The production of unusually large offspring following embryo manipulation: Concepts and challenges. Theriogenology, 45: 111-120 https://doi.org/10.1016/0093-691X(95)00360-K
  17. Wells DN, Misica PM, Day AM and Tervit HR. 1997. Production of cloned lambs from an established embryonic cell line: A comparison between in vivo- and in vitro-matured cytoplasts. Biol. Reprod., 57:385-393 https://doi.org/10.1095/biolreprod57.2.385
  18. Wilmut I, Schnieke AE, McWhir J, Kind AJ and Campbell KHS. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature, 385:810-813 https://doi.org/10.1038/385810a0
  19. Young LE, Sinclair KD and Wilmut I. 1998. Large offspring syndrome in cattle and sheep. Rev. Reprod., 3:155-163 https://doi.org/10.1530/ror.0.0030155
  20. Zakhartchenko V, Durcova-Hills G, Stojkovic M, Schernthaner W, Prelle K, Steinborn R, Muller M, Brem G and Wolf E. 1999. Effects of serum starvation and re-cloning on the efficiency of nuclear transfer using bovine fetal fibroblasts. J. Reprod. Fertil., 115:325-331 https://doi.org/10.1530/jrf.0.1150325
  21. Zou XG, Wang UG, Cheng Y, Yang YE, Ju HM, Tang HL, Shen Y, Mu ZY, Xu SF and Du MA. 2002. Generation og cloned goats(Capra hircus) form transfected foetal fibroblast cell, the effect of donor cell cycle. Mol. Reprod. Dev., 61:164-172 https://doi.org/10.1002/mrd.1143
  22. 박희성, 김태숙, 이윤희, 정수영, 이명열, 홍승표, 박준규, 김충희, 정장용. 2004. 재래산양에 있어서 핵이식란의 융합 조건이 융합 및 체외발달에 미치는 영향. 한국동물번식학회지, 28:127-132
  23. 박희성, 김태숙, 정수영, 박준규, 이지삼, 정장용 2006. 공핵 세포 및 발정동기화가 복제 재래 산양 생산에 미치는 영향. 한국수정란이식학회지, 21:137-146
  24. 이지삼, 곽대오, 박충생. 1985. 재래산양의 계절적 무발정기의 혈중 progesterone의 변화에 관한 연구. 한국축산학회지, 27: 749-755