AN IMMERSED BOUNDARY METHOD WITH FEEDBACK FORCING FOR SIMULATION OF FLOW AROUND AN ARBITRARILY MOVING BODY

임의로 움직이는 물체 주위의 유동 해석을 위한 피드백 강제 외력을 이용한 가상경계방법

  • 신수재 (한국과학기술원 기계공학과) ;
  • 황위희 (한국과학기술원 기계공학과) ;
  • 성형진 (한국과학기술원 기계공학과)
  • Published : 2007.06.30

Abstract

We present an improved immersed boundary method for computing incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. The main idea is to incorporate feedback forcing scheme of virtual boundary method with Peskin's regularized delta function approach in order to use large CFL number and transfer quantities between Eulerian and Lagrangian domain effectively. From the analysis of stability limits and effects of feedback forcing gains, optimum regions of the feedback forcing are suggested.

Keywords

References

  1. Mittal, R. and Iaccarino, G., 2005, 'Immersed boundary methods,' Annu. Rev. Fluid Mech., Vol.37, pp.239-261 https://doi.org/10.1146/annurev.fluid.37.061903.175743
  2. Peskin, C.S., 1977, 'Numerical analysis of blood flow in the heart,' J. Comput. Phys., Vol.25, pp.220-252 https://doi.org/10.1016/0021-9991(77)90100-0
  3. Lai, M.-C. and Peskin, C.S., 2000, 'An immersed boundary method with formal second-order accuracy and reduced numerical viscosity,' J. Comput. Phys., Vol.160, pp.705-719 https://doi.org/10.1006/jcph.2000.6483
  4. Goldstein, D., Handler, R. and Sirovich, L., 1993, 'Modeling a no-slip flow boundary with an external force field,' J. Comput. Phys., Vol.105, pp.354-366 https://doi.org/10.1006/jcph.1993.1081
  5. Lee, C., 2003, 'Stability characteristics of the virtual boundary method in three-dimensional applications,' J. Comput. Phys., Vol.184, pp.559-591 https://doi.org/10.1016/S0021-9991(02)00038-4
  6. Uhlmann, M., 2005, 'An immersed boundary method with direct forcing for the simulation of particulate flows,' J. Comput. Phys., Vol.209, pp.448-476 https://doi.org/10.1016/j.jcp.2005.03.017
  7. Saiki, E.M. and Biringen, S., 1996, 'Spatial simulation of a cylinder in uniform flow : application of a virtual boundary method,' J. Comput. Phys., Vol.123, pp.450-465 https://doi.org/10.1006/jcph.1996.0036
  8. Roma, A., Peskin, C. and Berger, M., 1999, 'An adaptive version of the immersed boundary method,' J. Comput. Phys., Vol.153, pp.509-534 https://doi.org/10.1006/jcph.1999.6293
  9. Peskin, C.S., 2002, 'The immersed boundary method,' Acta Numerica, Vol.11, pp.1-39 https://doi.org/10.1017/CBO9780511550140.001
  10. Kim, K., Baek, S,-J. and Sung, H.J., 2002, 'An implicit velocity decoupling procedure for incompressible Navier-Stokes equations,' Int. J. Numer. Meth. Fluids, Vol.38, pp.125-138 https://doi.org/10.1002/fld.205
  11. Dütsch, H., Durst, F., Becker, S. and Lienhart, H., 1998, 'Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers,' J. Fluid Mech., Vol.360, pp.249-271 https://doi.org/10.1017/S002211209800860X
  12. Kim, D. and Choi, H., 2006, 'Immersed boundary method for flow around an arbitrarily moving body,' J. Comput. Phys., Vol.212, pp.662-680 https://doi.org/10.1016/j.jcp.2005.07.010