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Abstract Tandem queueing systems well suit for modeling many telecommunication systems.
Recently, very general BMAP/G/1/N/1 — @/PH/1/M-1 type tandem queues were constructively studied.
In this paper we illustrate application of the obtained results for optimization of a buffer pool design.
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1. Introduction

Open queueing networks and tandem

queues as their important special case are

widely used in capacity planning and

performance evaluation of computer and
communication systems, service centers,
manufacturing systems, etc. Theory of

tandem queues is well developed, for
references see, e.g. (Gnedenko and Koenig
1983). Apart from approximate analysis of the
tandems used, e.g. (Heindl 2001; Heindl 2003;
Ferng and Chang 200la; Ferng and Chang
2001b), there are papers presented, that use
analytical methods for such investigation
(Breuer et al. 2004; Gomez Corral 2002a;

Gomez-Corral 2002b; Klimenok et al. 2005).
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This paper exploits results on BMAP/G/
1/N/1 — @/PH/1/M-1 type tandems with
losses and blocking at the second phase, see
(Breuer et al. 2004; Klimenok et al. 2005), to
calculate performance characteristics of the
tandem queues in case of finite buffer at the
(ie. N £ +0 ). The analytical
results were implemented in the Sirius-C

first phase

software package. This allows authors to

perform  optimization of some real-life
networks or their fragments. In the following
sections we outline major analytical results
necessary to calculate system characteristics
used in optimization criterion as well as
numerical examples of optimization in these

tandem systems.

2. Mathematical Model

We consider tandem queue consisting of
two queues (phases). The first queue is of
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the BMAP/G/1/N type, ie., it has a single
server, finite buffer of capacity N, general
service time distribution function B(t) having

b ! 1dB(r)

the finite initial moment . The input

flow is described by the BMAP( Batch
Markovian Arrival Process). The BMAP was
introduced by D. Lucantoni (Lucantoni 1991)
as extension of the models of versatile flows
by M. Neuts (Neuts 1989) and N flows by
(Ramaswami 1980). The class of the BMAP
includes many previously considered input
flows such as, eg. the stationary Poisson
(M), Erlangian (Ek), Hyper-Markovian (HM),
Phase-Type (PH), Markov Modulated Poisson
(MMPP), etc. As opposed to
recwrrent (GI) flows and PH flow in
particular, the BMAP flow is correlated one.
It makes it extremely useful for modeling the

Process

real flows in modern telecommunication
networks. The BMAP is defined by means of

the directing (underlying) process V.t 2 0,
which is a continuous time Markov chain

with the state space{®L~W} Arrival of

customers occurs in batches at the epochs
when the process Y»?20 has jumps. The
intensities of jumps from one state into
another one, which are accompanied by

arrival of a batch consisting of k customers,
are combined into the matrices Di>* 20  of
size (W+Dx(W +1). The matrix generating

i : . D=3 Dy f<1
function of these matrices is”® %2 ¥l

The matrix P() is an infinitesimal generator

of the process Yi»t20_ The vector 8 of this

process  stationary  distribution  satisfies

equations 0D (1) = 0,6 =1 Here and in the
sequel 0 are zero row vectors and & is
column vector of appropriate size consisting of
units. In case the dimensionality of the vector
1s not clear from context, it is indicated as a

subscript, e.g. " denotes the unit column
vector of dimensionality W =W +1 .
The average intensity #(fundamental rate)

of the BMAP is defined as
A=6D'(z)|,.&

A

The intensity “zof groups arrival is defined

as
Ay =0(-Dy)E

Variance vof intervals between the groups
arrival is calculated as:

v=24, 8(-Dy) e -4,

The correlation coefficient <« of intervals
between the successive groups arrival is
calculated as

ceor = |2 78(= Dy ) (DA) - Dy - D)2 - 2,2 v

For more information about the BMAP
and related research see (Lucantoni 1991) and
the overviewing paper by S. Chakravarthy
(Chakravarthy 2001). The second queue has a
finite buffer of capacity M —1L,M 21 The
single server is characterized by the PH-
type service time distribution having an

irreducible representation ('B’S ) Here 8 is
the stochastic row-vector of dimension X and
Sis K xK  matrix having the
non-negative

negative
diagonal and non-diagonal
entries, such as the column vector So= -5
is non-negative and has at least one . positive

entry. The average service time is defined as

_17_



p-s)'e.
customers finds insufficient number of places
in a buffer (or the buffer is already full), the
suitable number of customers from the batch
joins a queue while the rest (or the whole

In case the entering batch of

group) leaves the system forever (is lost at
the first phase).
completes the service at first phase and
meets the buffer before the second phase is

In case the customer

busy, we consider two cases:

- this customer leaves the system forever
and is considered to be lost at the
second phase.

- this customer waits for a buffer to have
empty cell and prevents, during waiting
period the other customers from being
served at the first phase (i.e. service is
blocked).

For optimization tasks we calculate the
steady state distribution of the number of
custorhers and loss probability in the tandem
system. '

2.1 Embedded Markov Chain

Following (Klimenok et al. 2005) for tandem
with losses at the second phase, we consider

1 Y o~ o~ g
the DI’OCCSSgt() = lt,JnVu’h}’tZO’OS’lSNH,

0<j,SM, 0S¥V, <W1<7, <K  where § is
the number of cﬁstomers at the first phase,
J is the number of customers at the second
phase, % is the state of the BMAP directing
process, 7 is the state of the directing
process of the PH service at epoch »¢20
Following (Breuer et al. 2004): for tandem
with blocking at the second phase we consider
the process S+ = it’j.r’;t’ﬁt’it}’tZOaOSZSN"‘l,

0<T,<M,0<V, <W,I<7, <K Z, =0l where

i, J, %, % have the same meanings as in
if the

first server is working or waiting for a

y

the tandem with losses, and Z:=0

customer at moment t or Z:=! if it is
blocked.

1 2 -
The processes 6:+°220  and ¢P,tz20

are non-Markovian. Thus, to investigate these
processes, first we consider the embedded (at
the service completion epochs »>221 at the
first phase) Markov chains.

Due to fact that, in tandem with blocking a
customer, which causes a blocking, is not
counted either at the second or at the first

phases, the multi-dimensional embedded
Markov chains will have the same
components

1 2 ..

G()ag;( ) ={lt’.]t’vt?77t}’n21
where

~

in =Zn+03 O<l <N, jn =]tn_0,0SjnSA4[

=1, =

Vu=V, ,0Sv, <W,n, =1, 0,11, <K

Note that if /»=0, and then value of the
component 7 =9is not defined. Introduce the
stationary state probabilities of these Markov
chains as:

7(i,0,9) = lim P{i, =i, j,=0,v,=v}
n—>x0

ﬂ.(l?.]’v’ﬂ)zhmp{ln :i’jn :j’vn =v’77n =77}
0<igs N ,

0<vW,l<p<KkK

0< js M

’

Vectors of stationary state probabilities are
defined as follows:
7G,0) ={7(,0,0), 7(G,0,1), -+, 7,0, W)}, i= O,N
z(i, j)={z(, j,0,1),-+,7(, J,0,K),
7@, j,,1), -, 7, j,1,K),

”(i’j’W9l)""9ﬂ(i’j’W’K)}’i20’ .])0
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7 =4, 0, 2, 1), -, 7 G, M)}
Conditions for this stationary distribution
existence as well as definition of transition

probabilities matrices can be found in (Breuer
et al. 2004; Klimenok et al. 2005).

22 Steady State Distribution at Arbitrary
Epochs

Having calculated vectors 7#i>i=0,N by
means of algorithms suggested in (Breuer et al.
2004; Klimenok et al. 2005), we could calculate
steady-state distributions at arbitrary epochs.
For the tandem with losses at the second
phase, these stationary probabilities and their
vectors we define as follows!

PO (,0,v) =lim P =i, 7, =0, =v}
t—

P0G, jov) =lim P =i, = .9, =v.7i, =}

0<isN+1 0(jsM 02vIW,sp<K

Enumerate the states of process ¢ Dizo
in the lexicographic arder and form the probability

vectors p(l) (la .])J = 03N+ 1,.] = LM B of

corresponding probabilities and

—(1 Dy D
p§)={p()(l,0),"',l’()(laM)}_ For the tandem

with blocking at the second phase these
stationary probabilities and their vectors we
define as follows!:

p@(i,0,v) =lim P{f =i, , =0,5, =v}
t->®
p(Z)(i’j’V:”) =}L12P{Z=i’ .7t =ja;t =v’77t = 77}

POGM v, =lim PE =i, T, = .5 =v,77, = .7, = 2}

0<ics N+1 0(jsM 0LvSW,1<p<K

z=0,1

Enumerate the states of process $ Pezo
in the lexicographic order and form the probability

pPPG =0, N+Lj=LM -1 gnq

vectors

2 - 2) /. '
P( )(z,M,O),p( )(z,M,l) of  corresponding
probabilities and denote
PO ={p @00, PP M -1, PP M,0)+ pOGM D],

i=o,N +1

We refer to the papers (Breuer et al. 2004;
Klimenok et al. 2005), where the analytical
steady-state

formulas for calculation of

probability vectors P :r) i=0,N+Lr=1, 2

are presented.
2.3 Tandem Performance Characteristics
The most characteristics for

investigated systems are:

- the loss probability at the first phase

PO p@ .
st ‘st for tandems with losses and

important

blocking respectively;
- the loss probability at the second phase

(2) .
Po1 for the tandem with losses only.

These loss probabilities can be calculated
as follows:
N+1-i

PO =1- ,rlzpm Z(k+i—N—1)5ké

N+1-i

P® =1- ,1‘12*‘” D (k+i-N-DDié
k=0

©
2 -
lgs.s?l _Z z M)e
i=0

where

~ [p, 0
0 1,,®D,®I,

® —-denotes Kroneker product of matrices,
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denotes matrix of  appropriate
dimension. or the system with blocking it is
not possible to lose the customer at the

0

identity

) 2 g .
second phase, thus we consider Pl 2=0 jn
numerical examples for optimization criterion

without loss of generality.

3. Optimization Criterions and Numerical
Example
We consider two strategies of buffers
capacity planning:
- buffer capacities at the first and at the
second phases are independent;
- memory is shared between first and
second phases, thus total buffers capacity
at both phases is constant.

To perform optimization task, we use the
following cost criterion

C= Cl N+ C?. (M -1+ Classl ﬂ‘Plassl + CIassZZ'(l - Plossl )Plas.rZ

where Cusst is penalty for a customer loss
at the first phase, Cws2 is penalty for a
customer loss at the second phase, i is cost

of the cell at the first buffer; €2 is cost of
the cell at the second buffer.

For the case of shared buffer capacities we
used the following criterion

C= Clossl’?‘PIossl + Closs2j' (1 - Plossl )PlossZ

3.1 Parameters of Tandems for Numerical

Examples
We wuse the following parameters for
numerical examples. Input flow is a

BMAP-flow of intensity, 4 =10, intensity of

groups Ag =35

, with correlation C€er =0.19999%
and variation ©v =12.2732

Matrices defining the BMAP are as follows

| -6.74538  5.45412x107
°7|5.45412x107°  -0.219455
201021 0.0134084
D1=D3=
0.036728 0.0291068
[ 268027 00178778
?710.0489707  0.038809
Dy=0,k>4

Service time distribution at the first
phase is degenerate with mean T =0.07
Phase-type service time distribution at the

second phase has the following parameters

s [0 07
Tl o —40| A=[07 03]

These parameters make mean service time
at the second phase equal to 0.0775.

3.2 First Numerical Example

In this example we consider independent
buffer capacities at the first and at the
second phases. Cost parameters in the
criterion are specified as follows. Cost € of a
buffer cell at the first phase is 1, cost €2 of
a buffer cell at the second phase is 2, penalty
Cuss1 for customer loss at the first phase is

9, penalty Cuws2for the customer loss at the
second phase is 15. Figures 1 and 2 present
values of the optimization criterion for various
values of buffer size at the first and the
second phases.
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It can be seen that, for the fixed above customer’s loss at the second phase. Optimal
values of the cost parameters, the value of value of the criterion is equal to 39.334 at
the criterion is smaller for the model with point N=5 M = 7.

Q

rTr1rirr17i

Figure 2: Dependency of criterion value on the buffers capacity for tandem with blocking

3.3 Second Numerical Example the total capacity M + N of two buffers is 16

and we share it between two phases. The

In this numerical example we consider the result is presented on Figure 3. Optimal value

same costs as in the previous example and of the criterion is equal to 17.90 and M and N
shared buffer capacities, ie. it is assumed, that are equal to 7 and 9 respectively.
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Figure 3: Dependency of criterion value on the first buffer capacity for N +M = 16

4. Conclusion

This paper gives examples of optimization of
the tandem queueing models, which can be
used to support operational maintenance of the
telecommunication networks or their fragments.
It can also be used to verify approximating
results during investigation of the real-life
network objects. This paper demonstrates the

definite advantages of the ability to 'analyze

networks with correlated traffic, which is the

case in modern telecommunication systems.
Given examples show that application of such
models can save up to 200% of operational
This work addresses
applicability of the analytical formulas and is
aimed to help to further application of the

in the

costs. practical

queueing networks investigation of
modern telecommunication systems like cellular
phones networks, Internet service providers’
networks and many others under considerations
of the complex heterogeneous nature of the

traffic.
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