Effects of Solid Propellant Cases on the Thermal Response of Nozzle Liner

노즐 내열재 열반응에 미치는 고체 추진제 연소가스의 영향

  • 황기영 (국방과학연구소 추진기관부) ;
  • 임유진 (국방과학연구소 추진기관부) ;
  • 함희철 (국방과학연구소 추진기관부) ;
  • 강윤구 (국방과학연구소 추진기관부) ;
  • 배주찬 (국방과학연구소 추진기관부)
  • Published : 2007.04.30

Abstract

The thermal response characteristics of nozzle liner for a solid rocket motor applying highly aluminized PCP or HTPB propellant with slotted tube grain have been investigated. The SEM photographs of aluminum oxide particles taken from nozzle liner show that the PCP propellant with the finer and less contents of oxidizer can offer greater possibility for increasing aluminum agglomeration than the HTPB propellant. The PCP propellant shows locally greater mechanical erosion at 4 circumferential areas of the nozzle entrance in line with grain slot due to the impingement of large particles, but the HTPB propellant shows greater thermochemical ablation at the nozzle blast tube, the throat insert and the exit cone because of relatively much more mole fraction of $H_2O\;and\;CO_2$ in combustion gases.

슬랏이 있는 튜브형 그레인 형상의 알루미늄 함유 PCP계 또는 HTPB계 추진제를 충전한 고체 추진기관에 대해 노즐 내열재의 열반응 특성을 분석하였다. 노즐 내열재에서 채취한 산화알루미늄 입자의 SEM 사진을 통해 상대적으로 크기가 작고 저 함량의 산화제를 포함한 PCP계 추진제는 HTPB계 추진제보다 알루미늄 분말들이 응집될 가능성이 크다는 것을 확인할 수 있었다. PCP계 추진제를 적용한 경우에는 그레인 슬랏과 일치하는 노즐 축소부 내열재의 원주방향 4개 영역에서 큰 입자의 산화알루미늄 충돌로 인해 국부적으로 삭마가 많았지만 HTPB계 추진제는 연소가스내 $H_2O$$CO_2$의 몰분율이 상대적으로 많음으로 인해 노즐 토출관, 목삽입재 및 확대부 내열재에서 화학반응으로 인한 삭마가 많았다.

Keywords

References

  1. Douglass, H. W., Collins Jr., J. H., Ellis, R. A. and Keller Jr., R. B., "Solid Rocket Motor Nozzles," NASA SP-8115, 1975
  2. Truchot, A., "Design and Analysis of Solid Rocket Motor Nozzle," AGARD-LS-150 (Revised), 1988, pp.3-1-3-22
  3. Sutton, G. P., Rocket Propulsion Elements, John Wiley & Sons, Inc., 1992
  4. Cohen Nir, E., "Combustion of Powdered Metals in Contact with a Solid Oxidizer (Ammonium Perchlorate)," International Thirteenth Symposium on Combustion, The Combustion Institute, 1971, pp.1019-1029
  5. Salita, M., "Predicted Slag Deposition Histories in Eight Solid Rocket Motors Using the CFD Model EVT," AIAA Paper 95-2728, July 1995
  6. Melia, P. F., "Flow and Ablation Patterns in Titan IV SRM Aft Closures," AIAA Paper 95-2878, July 1995
  7. Ketner, D. M. and Hess, K. S., "Particle Impingement Erosion," AIAA Paper 79-1250, June 1979
  8. Whitesides, R. H. and Purinton, D. C., "Effects of Slag Ejection on Solid Rocket Motor Performance," AIAA Paper 95-2724, July 1995
  9. 임유진, "유도탄용 고체 추진제 기술의 발전 추세," 한국추진공학회지, 제9권, 제4호, 2005, pp.112-120
  10. Cohen, N. S., "A Pocket Model for Aluminum Agglomeration in Composite Propellants," AIAA Journal, Vol.21, No.5, 1983, pp.720-725 https://doi.org/10.2514/3.8139
  11. Lengellẻ, G., Duterque, J., and Trubert, J. F., "Combustion of Solid Propellants," RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion, RTO-EN-023, Belgium, May 2002, pp.4-1-4-62.
  12. McBride, B. J. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, II. Users Manual and Program Description," NASA RP-1311, 1996
  13. Keswani, S. T., Andiroglu, E., Campbell, J. D., and Kuo, K. K., "Recession Behavior of Graphitic Nozzles in Simulated Rocket Motors," AIAA Paper 83-1317, June 1983
  14. 황기영, 강윤구, "삭마 및 내부 열분해를 고려한 로켓노즐 탄소계 내열재의 2차원 열해석," 한국추진공학회지, 제3권, 제2호, 1999, pp.37-47
  15. Borie, V., Brulard, J., and Lengellẻ, G., "An Aerothermochemical Analysis of Carbon- Carbon Nozzle Regression in Solid- Propellant Rocket Motors," AIAA Paper 88-3346, July 1988
  16. Lapp, P. and Quesada, B., "Analysis of Solid Rocket Motor Nozzle," AIAA Paper 92-3616, June 1992
  17. Chen, Y. K. and Milos, F. S., "Ablation and Thermal Response Program for Spacecraft Heatshield Analysis," Journal of Spacecraft and Rockets, Vol.36, No.3, 1999, pp.475-483 https://doi.org/10.2514/2.3469
  18. Laturelle, F., Sophie, F. and Ted, B. W., "MSC.Marc-ATAS : Advanced Thermal Analysis Software for Modeling of Rocket Motors and Other Thermal Protection Systems," MSC Aerospace Conference, Toulouse, France, 2002
  19. Boyarintsev, V. I. and Zvyagin, Yu. V., "Turbulent Boundary Layer on Reacting Graphite Surface," 5th Int. Heat Transfer Conference, Tokyo, Sep. 1974, pp.264-268
  20. Bartz, D. B., "A Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficients," Jet Propulsion, Vol.27, No.1, 1957, pp.49-51 https://doi.org/10.2514/8.12572