Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows

경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구

  • 장성하 (한국항공대학교 항공우주 및 기계공학부 대학원) ;
  • 이열 (한국항공대학교 항공우주 및 기계공학부)
  • Published : 2007.04.30

Abstract

Computational study on the passive control of the oblique shock-wave/turbulent boundary-layer interaction utilizing slotted plates over a cavity has been carried out. The numerical boundary layer profile upstream of the interaction follows the compressible turbulent boundary-layer theory reasonably well, and the other results also show good agreements with the experimental observations, such as the wall surface pressures and Schlieren flow visualizations. Further, the effects of various slot configuration including number, location and angle of the slots on the characteristics of the interactions, such as the variation of the total pressures, the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through the slots, are also tested and compared.

공동부 위에 설치된 슬롯판을 이용한 경사충격파와 난류 경계충의 간섭유동의 피동제어에 관한 수치적 연구가 수행되었다. 수치해석에서 얻어진 결과는 간섭전방에서 압축성 난류경계층 이론을 잘 따르고 있었으며, 또한 벽압력 분포와 쉴리렌 유동가시화와 같은 실험결과와 서로 잘 일치하고 있음이 확인되었다. 또한 슬롯의 위치와 개수, 슬롯의 각도 등 슬롯판의 다양한 형상변화가 간섭유동 특성에 미치는 영향이 관찰되었으며, 간섭유동 후방의 전압변화, 경계층 특성변화, 그리고 슬롯판을 통하여 공동부로 순환하는 질량유량의 변화 등이 서로 비교분석 되었다.

Keywords

References

  1. Settles, G. S. and Dolling, D. S., "Swept Shock Wave/Boundary-Layer Interactions," Tactical Missile Aerodynamics, Vol 104, Progress in Astronautics and Aeronautics, AIAA, 1986, pp.297-379
  2. Delery, J. M., "Shock Wave/Turbulent Boundary Layer Interaction and Its Control," Progress in Aerospace Sciences, Vol. 22, No. 4, 1985, pp.209-280 https://doi.org/10.1016/0376-0421(85)90001-6
  3. Gridley, M. C. and Walker S. H., "Advanced Aero-Engine Concepts and Controls," CP-572, AGARD, 1986
  4. Bur, R., Corbel, B., and Delery, J., "Study of Passive Control in a Transonic Shock Wave/Boundary-Layer Interaction," AIAA Journal, Vol. 36, No. 3, 1998, pp.394-400 https://doi.org/10.2514/2.376
  5. Raghunathan, S. and Mabey, D., "Passive Shock-Wave/Boundary-Layer Control on a Wall-Mounted Model," AIAA Journal, Vol. 25, No. 2, 1987, pp.275-278 https://doi.org/10.2514/3.9618
  6. Lee, Y., Hafenrichter, E., Dutton, J. C., and Loth, E., "Skin Friction Measurements for Recirculating Normal Shock Boundary Layer Interaction Control," AIAA Journal, Vol. 42, No. 4, 2004, pp.806-814 https://doi.org/10.2514/1.9561
  7. 장성하, 이 열, "슬롯형상이 경사충격파 간섭유동의 피동제어에 미치는 영향에 관한 연구," 한국항공우주학회지, 34권 12호, 2006, pp.18-24
  8. Mcllwain, S. T., Kim, J. Y., Breitenfeld, S., Loth, E., Geubelle, P.M. and Torterelli, D., "Simulation of an Aeroelastic Control System for Shock/Boundary-Layer Interactions," AIAA 01-16181, 2001
  9. Wood, B., Lath, E., and Geubelle, P., "Simulation of Aeroelastic Mesoflaps for Shock/Boundary-Layer Interaction," Journal of Fluids and Structures, Vol. 16, No. 8, 2002, pp.1127-1144 https://doi.org/10.1006/jfls.2002.0464
  10. Jaiman, R. K., Loth, E., and Dutton, J. C., "Simulation of Normal Shock Wave/ Boundary-Layer Interaction Control Using Mesoflaps," Journal of Propulsion and Power, Vol. 20, No. 2, 2004, pp.344-352 https://doi.org/10.2514/1.9258
  11. Sun, C. C. and Childs, M. E., "A Modified Wall Wake Velocity Profile for Turbulent Compressible Boundary Layers," Journal of Aircraft, 10, 1973