DOI QR코드

DOI QR Code

STABILITY OF A MIXED TYPE FUNCTIONAL EQUATION IN 3-VARIABLES

  • Lee, Sang-Han (Department of Cultural Studies, Chungbuk Provincial University of Science & Technology)
  • Received : 2007.08.01
  • Published : 2007.12.25

Abstract

In this paper, we prove the stability of a mixed type functional equation f( -x + y + z) + f(x - y + z) + f(x + y - z) = f(x - y) + f(y - z) + f(z - x) + f.(x) + f(y) + f(z).

Keywords

References

  1. J.-H. Bae and K.-W. Jun, On the generalized Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 38 (2001), 325-336.
  2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
  3. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  4. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aeq. Math. 44 (1992), 125-153. https://doi.org/10.1007/BF01830975
  5. K.-W. Jun and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), 93-118.
  6. S.-M. Jung and B. Kim, On the stability of the quadratic functional equation on bounded dimains, Abh. Math. Sem. Univ. Hamburg 69 (1999), 293-308. https://doi.org/10.1007/BF02940881
  7. S.-M. Jung, Quadratic functional equations of Pexider type, Internat. J. Math. & Math. Sci. 24 (2000), 351-359. https://doi.org/10.1155/S0161171200004075
  8. G. H. Kim, On the stability of the quadratic mapping in normed spaces, Internat. J. Math. & Math. Sci. 25 (2001), 217-229. https://doi.org/10.1155/S0161171201004707
  9. S. H. Lee, Stability of a quadratic Jensen type functional equation, Korean J. Comput. & Appl. Math. (Series A) 9 (2002), 389-399.
  10. S. H. Lee and K.-W. Jun, Hyers-Ulam-Rassias stability of a quadratic type functional equation, Bull. Korean Math. Soc. 40 (2003), 183-193. https://doi.org/10.4134/BKMS.2003.40.2.183
  11. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
  12. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  13. F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. https://doi.org/10.1007/BF02924890
  14. T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267. https://doi.org/10.4134/BKMS.2003.40.2.253
  15. S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.