References
- AGRESTI, A. AND COULL, B. A. (1998). 'Approximate is better than 'exact' for interval estimation of binomial proportions', The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
- AGRESTI, A. AND CAFFO, B. (2000). 'Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures', The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
- AGRESTI, A. AND MIN, Y. (2005). 'Simple improved confidence intervals for comparing matched proportions', Statistics in Medicine, 24, 729-740 https://doi.org/10.1002/sim.1781
- BARNETT, V., HAWORTH, J. AND SMITH, T. M. F. (2001). 'A two-phase sampling scheme with applications to auditing or sed quis custodiet ipsos custodes?', Journal of Royal Statistical Society, Ser. A, 164, 407-422 https://doi.org/10.1111/1467-985X.00210
- BOESE, D. H., YOUNG, D. M. AND STAMEY, J. D. (2006). 'Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification', Computational Statistics & Data Analysis, 50, 3369-3385 https://doi.org/10.1016/j.csda.2005.08.007
- BROSS,!. (1954). 'Misclassification in 2 x 2 tables', Biometrics, 10, 478-486 https://doi.org/10.2307/3001619
- BROWN, L. D., CAl, T. T. AND DASGUPTA, A. (2001). 'Interval estimation for a binomial proportion', Statistical Science, 16, 101-133
- GENG, Z. AND ASANO, C. (1989). 'Bayesian estimation methods for categorical data with misclassifications', Communications in Statistics-Theory and Methods, 18, 2935-2954 https://doi.org/10.1080/03610928908830069
- LEE, S.-C. (2006a). 'The weighted Polya posterior confidence interval for the difference between two independent proportions', The Korean Journal of Applied Statistics, 19, 171-181 https://doi.org/10.5351/KJAS.2006.19.1.171
- LEE, S.-C. (2006b). 'Interval estimation of binomial proportions based on weighted Polya posterior', Computational Statistics & Data Analysis. 51, 1012-1021 https://doi.org/10.1016/j.csda.2005.10.008
- LIE, R. T., HEUCH, L. AND IRGENS, L. M. (1994). 'Maximum likelihood estimation of the proportion of congenital malformations using double registration systems', Biometrics, 50, 433-444 https://doi.org/10.2307/2533386
- MOORS, J. J. A., VAN DER GENUGTEN, B. B. AND STRIJBOSCH, L. W. G. (2000). 'Repeated audit controls', Statistica Neerlandica, 54, 3-13 https://doi.org/10.1111/1467-9574.00122
- PRICE, R. M. AND BONETT, D. G. (2004). 'An improved confidence interval for a linear function of binomial proportions', Computational Statistics & Data Analysis, 45, 449-456 https://doi.org/10.1016/S0167-9473(03)00007-0
- RAATS, V. M. AND MOORS, J. J. A. (2003). 'Double-checking auditors: a Bayesian approach', The Statistician, 52, 351-365 https://doi.org/10.1111/1467-9884.00364
- TENENBEIN, A. (1970). 'A double sampling scheme for estimating from binomial data with misclassifications', Journal of American Statistical Association, 65, 1350-1361 https://doi.org/10.2307/2284301
- TENENBEIN, A. (1971). 'A double sampling scheme for estimating from binomial data with misclassifications: sample size determination', Biometrics, 27, 935-944 https://doi.org/10.2307/2528829
- TENENBEIN, A. (1972). 'A double sampling scheme for estimating from misclassified multinomial data with applications to sampling inspection', Technometrics, 14, 187-202 https://doi.org/10.2307/1266930
- YORK, J., MADIGAN, D., HEUCH, I. AND LIE, R. T. (1995). 'Birth defects registered by double sampling: a Bayesian approach incorporating covariates and model uncertainty' , Applied Statistics, 44, 227-242 https://doi.org/10.2307/2986347