AN IMPROVED CONFIDENCE INTERVAL FOR THE POPULATION PROPORTION IN A DOUBLE SAMPLING SCHEME SUBJECT TO FALSE-POSITIVE MISCLASSIFICATION

  • Published : 2007.06.30

Abstract

Confidence intervals for the population proportion in a double sampling scheme subject to false-positive misclassification are considered. The confidence intervals are obtained by applying Agresti and Coull's approach, so-called "adding two-failures and two successes". They are compared in terms of coverage probabilities and expected widths with the Wald interval and the confidence interval given by Boese et al. (2006). The latter one is a test-based confidence interval and is known to have good properties. It is shown that the Agresti and Coull's approach provides a relatively simple but effective confidence interval.

Keywords

References

  1. AGRESTI, A. AND COULL, B. A. (1998). 'Approximate is better than 'exact' for interval estimation of binomial proportions', The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
  2. AGRESTI, A. AND CAFFO, B. (2000). 'Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures', The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
  3. AGRESTI, A. AND MIN, Y. (2005). 'Simple improved confidence intervals for comparing matched proportions', Statistics in Medicine, 24, 729-740 https://doi.org/10.1002/sim.1781
  4. BARNETT, V., HAWORTH, J. AND SMITH, T. M. F. (2001). 'A two-phase sampling scheme with applications to auditing or sed quis custodiet ipsos custodes?', Journal of Royal Statistical Society, Ser. A, 164, 407-422 https://doi.org/10.1111/1467-985X.00210
  5. BOESE, D. H., YOUNG, D. M. AND STAMEY, J. D. (2006). 'Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification', Computational Statistics & Data Analysis, 50, 3369-3385 https://doi.org/10.1016/j.csda.2005.08.007
  6. BROSS,!. (1954). 'Misclassification in 2 x 2 tables', Biometrics, 10, 478-486 https://doi.org/10.2307/3001619
  7. BROWN, L. D., CAl, T. T. AND DASGUPTA, A. (2001). 'Interval estimation for a binomial proportion', Statistical Science, 16, 101-133
  8. GENG, Z. AND ASANO, C. (1989). 'Bayesian estimation methods for categorical data with misclassifications', Communications in Statistics-Theory and Methods, 18, 2935-2954 https://doi.org/10.1080/03610928908830069
  9. LEE, S.-C. (2006a). 'The weighted Polya posterior confidence interval for the difference between two independent proportions', The Korean Journal of Applied Statistics, 19, 171-181 https://doi.org/10.5351/KJAS.2006.19.1.171
  10. LEE, S.-C. (2006b). 'Interval estimation of binomial proportions based on weighted Polya posterior', Computational Statistics & Data Analysis. 51, 1012-1021 https://doi.org/10.1016/j.csda.2005.10.008
  11. LIE, R. T., HEUCH, L. AND IRGENS, L. M. (1994). 'Maximum likelihood estimation of the proportion of congenital malformations using double registration systems', Biometrics, 50, 433-444 https://doi.org/10.2307/2533386
  12. MOORS, J. J. A., VAN DER GENUGTEN, B. B. AND STRIJBOSCH, L. W. G. (2000). 'Repeated audit controls', Statistica Neerlandica, 54, 3-13 https://doi.org/10.1111/1467-9574.00122
  13. PRICE, R. M. AND BONETT, D. G. (2004). 'An improved confidence interval for a linear function of binomial proportions', Computational Statistics & Data Analysis, 45, 449-456 https://doi.org/10.1016/S0167-9473(03)00007-0
  14. RAATS, V. M. AND MOORS, J. J. A. (2003). 'Double-checking auditors: a Bayesian approach', The Statistician, 52, 351-365 https://doi.org/10.1111/1467-9884.00364
  15. TENENBEIN, A. (1970). 'A double sampling scheme for estimating from binomial data with misclassifications', Journal of American Statistical Association, 65, 1350-1361 https://doi.org/10.2307/2284301
  16. TENENBEIN, A. (1971). 'A double sampling scheme for estimating from binomial data with misclassifications: sample size determination', Biometrics, 27, 935-944 https://doi.org/10.2307/2528829
  17. TENENBEIN, A. (1972). 'A double sampling scheme for estimating from misclassified multinomial data with applications to sampling inspection', Technometrics, 14, 187-202 https://doi.org/10.2307/1266930
  18. YORK, J., MADIGAN, D., HEUCH, I. AND LIE, R. T. (1995). 'Birth defects registered by double sampling: a Bayesian approach incorporating covariates and model uncertainty' , Applied Statistics, 44, 227-242 https://doi.org/10.2307/2986347