References
- AN, H. Z. AND HUANG, F. C. (1996). 'The geometrical ergodicity of nonlinear autoregressive models', Statistica Sinica, 6, 943-956
- BILLINGSLEY, P. (1968). Convergence of Probability Measures, John Wiley & Sons, New York
- BOLLERSLEV, T. (1986). 'Generalized autoregressive conditional heteroskedasticity', Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
- BOLLERSLEV, T., CHOU, R. Y. AND KRONER, K. F. (1992). 'ARCH modeling in finance: A review of the theory and empirical evidence', Journal of Econometrics, 52, 5-59 https://doi.org/10.1016/0304-4076(92)90064-X
- BOUGEROL, P. AND PICARD, N. (1992). 'Strict stationarity of generalized autoregressive processes', The Annals of Probability, 20, 1714-1730 https://doi.org/10.1214/aop/1176989526
- BROCKWELL, P. J., LIU, J. AND TWEEDIE, R. L. (1992). 'On the existence of stationary threshold autoregressive moving-average processes', Journal of Time Series Analysis, 13, 95-107 https://doi.org/10.1111/j.1467-9892.1992.tb00096.x
- CANER, M. AND HANSEN, B. E. (2001). 'Threshold autoregression with a unit root', Econometrica, 69, 1555-1596 https://doi.org/10.1111/1468-0262.00257
- CLINE, D. B. H. AND Pu, H. H. (1998). 'Verifying irreducibility and continuity of a nonlinear time series', Statistics & Probability Letters, 40, 139-148 https://doi.org/10.1016/S0167-7152(98)00081-9
- CLINE, D. B. H. AND Pu, H. H. (2002). Stability of threshold-like ARMA time series, preprint
- VAN DIJK, D., TERASVIRTA, T. AND FRANSES, P. H. (2002). 'Smooth transition autoregressive models-a survey of recent developments', Econometric Reviews, 21, 1-47 https://doi.org/10.1081/ETC-120008723
- ENDERS, W. AND GRANGER, C. W. J. (1998). 'Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates', Journal of Business & Economic Statistics, 16, 304-311 https://doi.org/10.2307/1392506
- ENGLE, R. F. (1982). 'Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation', Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
- FRANCQ, C. AND ZAKOIAN, J.-M. (2000). 'Estimating weak GARCH representations', Econometric Theory, 16, 692-728 https://doi.org/10.1017/S0266466600165041
- GLYNN, P. W. AND MEYN, S. P. (1996). 'A Liapounov bound for solutions of the Poisson equation', The Annals of Probability, 24, 916-931 https://doi.org/10.1214/aop/1039639370
- GUEGAN, D. AND DIEBOLT, J. (1994). 'Probabilistic properties of the ,B-ARCH-model', Statistica Sinica, 4, 71-87
- HE, C. AND TERASVIRTA, T. (1999). 'Properties of moments of a family of GARCH processes', Journal of Econometrics, 92, 173-192 https://doi.org/10.1016/S0304-4076(98)00089-X
- HORN, R. A. AND JOHNSON, C. R. (1990). Matrix Analysis, Cambridge University Press, Cambridge
- HWANG, S. Y. AND KIM, T. Y. (2004). 'Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure', Stochastic Processes and their Applications, 110, 295-314 https://doi.org/10.1016/j.spa.2003.11.001
- LEE, O. (2000). 'On probabilistic properties of nonlinear ARMA(p,q) models', Statistics & Probability Letters, 46, 121-131 https://doi.org/10.1016/S0167-7152(99)00096-6
- LEE, a AND SHIN, D. W. (2000). 'On geometric ergodicity of the MTAR process', Statistics & Probability Letters, 48, 229-237 https://doi.org/10.1016/S0167-7152(99)00208-4
- LI, C. W. AND LI, W. K. (1996). 'On a double-threshold autoregressive heteroscedastic time series model', Journal of Applied Econometrics, 11, 253-274 https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<253::AID-JAE393>3.0.CO;2-8
- LING, S. (1999). 'On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model', Journal of Applied Probability, 36, 688-705 https://doi.org/10.1239/jap/1032374627
- LING, S. AND McALEER, M.(2002). 'Necessary and sufficient moment conditions for the GARCH(r,s) and asymmetric power GARCH(r,s) models', Econometric Theory, 18, 722-729
- Lru, J., LI, W. K. AND LI, C. W. (1997). 'On a threshold autoregression with conditional heteroscedastic variances', Journal of Statistical Planning and Inference, 62, 279-300 https://doi.org/10.1016/S0378-3758(96)00196-6
- Lu, Z. (1996). 'A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model', Statistics & Probability Letters, 30, 305-311 https://doi.org/10.1016/S0167-7152(95)00233-2
- MEYN, S. P. AND TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability, SpringerVerlag, London
- NUMMELIN, E. (1984). General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge
- PRIESTLEY, M. B. (1980). 'State-dependent models: a general approach to nonlinear time series analysis', Journal of Time Series Analysis, 1, 47-71 https://doi.org/10.1111/j.1467-9892.1980.tb00300.x
- RABEMANANJARA, R. AND ZAKOIAN, J. M. (1993). 'Threshold ARCH models and asymmetries in volatility', Journal of Applied Econometrics, 8, 31-49 https://doi.org/10.1002/jae.3950080104
- SHIN, D. W. AND LEE, O. (2001). 'Tests for asymmetry in possibly nonstationary time series data', Journal of Business & Economic Statistics, 19, 233-244 https://doi.org/10.1198/073500101316970458
- TJOSTHEIM, D. (1990). 'Nonlinear time series and Markov chains', Advances in Applied Probability, 22, 587-611 https://doi.org/10.2307/1427459
- TONG, H. (1990). Non-linear Time Series: a Dynamical System Approach, Oxford University Press, Oxford
- TWEEDIE, R. L. (1988). 'Invariant measures for Markov chains with no irreducibility assumptions', Journal of Applied Probability, 25A, 275-285
- WONG, H. AND LI, W. K. (1997). 'On a multivariate conditional heteroscedastic model', Biometrika, 84, 111-123 https://doi.org/10.1093/biomet/84.1.111
- WEISS, A. A. (1984). ARMA models with ARCH errors, Journal of Time Series Analysis, 5, 129-143 https://doi.org/10.1111/j.1467-9892.1984.tb00382.x