ON STRICT STATIONARITY OF NONLINEAR ARMA PROCESSES WITH NONLINEAR GARCH INNOVATIONS

  • Lee, O. (Department of Statistics, Ewha Womans University)
  • Published : 2007.06.30

Abstract

We consider a nonlinear autoregressive moving average model with nonlinear GARCH errors, and find sufficient conditions for the existence of a strictly stationary solution of three related time series equations. We also consider a geometric ergodicity and functional central limit theorem for a nonlinear autoregressive model with nonlinear ARCH errors. The given model includes broad classes of nonlinear models. New results are obtained, and known results are shown to emerge as special cases.

Keywords

References

  1. AN, H. Z. AND HUANG, F. C. (1996). 'The geometrical ergodicity of nonlinear autoregressive models', Statistica Sinica, 6, 943-956
  2. BILLINGSLEY, P. (1968). Convergence of Probability Measures, John Wiley & Sons, New York
  3. BOLLERSLEV, T. (1986). 'Generalized autoregressive conditional heteroskedasticity', Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  4. BOLLERSLEV, T., CHOU, R. Y. AND KRONER, K. F. (1992). 'ARCH modeling in finance: A review of the theory and empirical evidence', Journal of Econometrics, 52, 5-59 https://doi.org/10.1016/0304-4076(92)90064-X
  5. BOUGEROL, P. AND PICARD, N. (1992). 'Strict stationarity of generalized autoregressive processes', The Annals of Probability, 20, 1714-1730 https://doi.org/10.1214/aop/1176989526
  6. BROCKWELL, P. J., LIU, J. AND TWEEDIE, R. L. (1992). 'On the existence of stationary threshold autoregressive moving-average processes', Journal of Time Series Analysis, 13, 95-107 https://doi.org/10.1111/j.1467-9892.1992.tb00096.x
  7. CANER, M. AND HANSEN, B. E. (2001). 'Threshold autoregression with a unit root', Econometrica, 69, 1555-1596 https://doi.org/10.1111/1468-0262.00257
  8. CLINE, D. B. H. AND Pu, H. H. (1998). 'Verifying irreducibility and continuity of a nonlinear time series', Statistics & Probability Letters, 40, 139-148 https://doi.org/10.1016/S0167-7152(98)00081-9
  9. CLINE, D. B. H. AND Pu, H. H. (2002). Stability of threshold-like ARMA time series, preprint
  10. VAN DIJK, D., TERASVIRTA, T. AND FRANSES, P. H. (2002). 'Smooth transition autoregressive models-a survey of recent developments', Econometric Reviews, 21, 1-47 https://doi.org/10.1081/ETC-120008723
  11. ENDERS, W. AND GRANGER, C. W. J. (1998). 'Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates', Journal of Business & Economic Statistics, 16, 304-311 https://doi.org/10.2307/1392506
  12. ENGLE, R. F. (1982). 'Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation', Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
  13. FRANCQ, C. AND ZAKOIAN, J.-M. (2000). 'Estimating weak GARCH representations', Econometric Theory, 16, 692-728 https://doi.org/10.1017/S0266466600165041
  14. GLYNN, P. W. AND MEYN, S. P. (1996). 'A Liapounov bound for solutions of the Poisson equation', The Annals of Probability, 24, 916-931 https://doi.org/10.1214/aop/1039639370
  15. GUEGAN, D. AND DIEBOLT, J. (1994). 'Probabilistic properties of the ,B-ARCH-model', Statistica Sinica, 4, 71-87
  16. HE, C. AND TERASVIRTA, T. (1999). 'Properties of moments of a family of GARCH processes', Journal of Econometrics, 92, 173-192 https://doi.org/10.1016/S0304-4076(98)00089-X
  17. HORN, R. A. AND JOHNSON, C. R. (1990). Matrix Analysis, Cambridge University Press, Cambridge
  18. HWANG, S. Y. AND KIM, T. Y. (2004). 'Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure', Stochastic Processes and their Applications, 110, 295-314 https://doi.org/10.1016/j.spa.2003.11.001
  19. LEE, O. (2000). 'On probabilistic properties of nonlinear ARMA(p,q) models', Statistics & Probability Letters, 46, 121-131 https://doi.org/10.1016/S0167-7152(99)00096-6
  20. LEE, a AND SHIN, D. W. (2000). 'On geometric ergodicity of the MTAR process', Statistics & Probability Letters, 48, 229-237 https://doi.org/10.1016/S0167-7152(99)00208-4
  21. LI, C. W. AND LI, W. K. (1996). 'On a double-threshold autoregressive heteroscedastic time series model', Journal of Applied Econometrics, 11, 253-274 https://doi.org/10.1002/(SICI)1099-1255(199605)11:3<253::AID-JAE393>3.0.CO;2-8
  22. LING, S. (1999). 'On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model', Journal of Applied Probability, 36, 688-705 https://doi.org/10.1239/jap/1032374627
  23. LING, S. AND McALEER, M.(2002). 'Necessary and sufficient moment conditions for the GARCH(r,s) and asymmetric power GARCH(r,s) models', Econometric Theory, 18, 722-729
  24. Lru, J., LI, W. K. AND LI, C. W. (1997). 'On a threshold autoregression with conditional heteroscedastic variances', Journal of Statistical Planning and Inference, 62, 279-300 https://doi.org/10.1016/S0378-3758(96)00196-6
  25. Lu, Z. (1996). 'A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model', Statistics & Probability Letters, 30, 305-311 https://doi.org/10.1016/S0167-7152(95)00233-2
  26. MEYN, S. P. AND TWEEDIE, R. L. (1993). Markov Chains and Stochastic Stability, SpringerVerlag, London
  27. NUMMELIN, E. (1984). General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge
  28. PRIESTLEY, M. B. (1980). 'State-dependent models: a general approach to nonlinear time series analysis', Journal of Time Series Analysis, 1, 47-71 https://doi.org/10.1111/j.1467-9892.1980.tb00300.x
  29. RABEMANANJARA, R. AND ZAKOIAN, J. M. (1993). 'Threshold ARCH models and asymmetries in volatility', Journal of Applied Econometrics, 8, 31-49 https://doi.org/10.1002/jae.3950080104
  30. SHIN, D. W. AND LEE, O. (2001). 'Tests for asymmetry in possibly nonstationary time series data', Journal of Business & Economic Statistics, 19, 233-244 https://doi.org/10.1198/073500101316970458
  31. TJOSTHEIM, D. (1990). 'Nonlinear time series and Markov chains', Advances in Applied Probability, 22, 587-611 https://doi.org/10.2307/1427459
  32. TONG, H. (1990). Non-linear Time Series: a Dynamical System Approach, Oxford University Press, Oxford
  33. TWEEDIE, R. L. (1988). 'Invariant measures for Markov chains with no irreducibility assumptions', Journal of Applied Probability, 25A, 275-285
  34. WONG, H. AND LI, W. K. (1997). 'On a multivariate conditional heteroscedastic model', Biometrika, 84, 111-123 https://doi.org/10.1093/biomet/84.1.111
  35. WEISS, A. A. (1984). ARMA models with ARCH errors, Journal of Time Series Analysis, 5, 129-143 https://doi.org/10.1111/j.1467-9892.1984.tb00382.x