Power Supply-Insensitive Gbps Low Power LVDS I/O Circuits

공급 전압 변화에 둔감한 Gbps급 저전력 LVDS I/O회로

  • Published : 2007.06.25

Abstract

This paper presents power supply-insensitive Gbps low power LVDS I/O circuits. The proposed LVDS I/O has been designed and simulated using 1.8V, $0.18\;{\mu}m$ TSMC CMOS Process. The LVDS I/O includes transmitter and receiver parts. The transmitter circuits consist of a differential phase splitter and an output stage with the switched capacitor common mode feedback(SC-CMFB). The differential phase splitter generates a pair of differential signals which provides a balanced duty $cycle(50{\pm}2%)$ and phase difference$(180{\pm}0.2^{\circ})$ over a wide supply voltage range. Also, $V_{OD}$ voltage is 250 mV which is the smallest value of the permissible $V_{OD}$ range for low power operation. The output buffer maintains the required $V_{CM}$ within the permissible range$(1.2{\pm}0.1V)$ due to the SC-CMFB. The receiver covers a wide input DC offset $range(0.2{\sim}2.6\;V)$ with 38 mV hysteresis and Produces a rail-to-rail output over a wide supply voltage range. Beside, the designed receiver has 38.9 dB gain at 1 GHz, which is higher than conventional receivers.

본 논문에서는 공급전압 변화에 둔감한 Gbps급 저전력 LVDS I/O회로를 설계하였다. 제안된 LVDS I/O는 1.8 V, $0.18\;{\mu}m$ TSMC 공정을 이용하여 설계, 시뮬레이션 및 검증하였다. 설계된 LVDS I/O회로는 송신단과 수신단을 포함한다. 제안하는 송신단은 phase splitter와 SC-CMFB를 이용한 출력버퍼로 구성된다. phase splitter의 출력은 공급 전압이 변화하여도 $50{\pm}2%$의 duty cycle을 가지며 $180{\pm}0.2^{\circ}$의 위상차를 가진다. 출력 버퍼는 SC-CMFB를 이용하여 허용 가능한 $V_{CM}$ 전압 값인 $1.2{\pm}0.1V$을 유지하도록 설계하였다. $V_{OD}$전압 또한 허용범위에서 최소값인 250 mV를 갖도록 설계하여 저전력 동작이 가능하도록 구성하였다 수신단은 38 mV의 히스테리시스 전압값을 가지면서 DC옵셋 전압값이 $0.2{\pm}2.6 V$로 넓은 공통 모드전압 범위가 가능하도록 설계하였고 공급전압 변화에도 rail-to-rail로 복원할 수 있는 기능을 가지고 있다. 또한, 수신단은 1 GHz에서 38.9 dB의 높은 전압 이득을 갖도록 설계하였다.

Keywords

References

  1. K. Suzuk, et al., 'A 500MHz 32b 0.4$\mu$m CMOS RISC Processor LSI,' ISSCC Digest of Technical Papers, pp. 214-215, Feb., 1994
  2. N. A. Kurb, et al., 'Multi-GHz Clocking Scheme for Intel$\circledR$ Pentium$\circledR$4 Microprocessor,' ISSCC Digest of Technical Papers, pp. 404-405, Feb., 2001
  3. W. J. Dally and J. Poulton, Digital System Engineering, Cambridge University Press, 1998
  4. Y. Konishi, et al., 'Interface Technologies for Memiries and ASICs-Review and Future Direction,' IEICE Trans. on Electronics, vol. E82-C, pp. 438-446, Mar., 1999
  5. Electrical characteristics of low-voltage differential signaling(LVDS) interface circuits, TIA/EIA-644, National Semiconductor Corp., ANSI/TIA/EIA, 1996
  6. IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coher-ent Interface (SCI), 1596.3 SCI-LVDS Standard, IEEE Std. 1596.3-1996, July 1996
  7. Huainan Ma, Sher Jiun Fang, Hiroshi Nakamura, 'Novel Active Differential Phase Splitters in RFIC for Wireless Applications,' in IEEE RFIC Symp. Dig. Papers, pp. 51-54, 1998
  8. Gunjan Mandal, Pradip Mandal 'Low Power LVDS Transmitter with Low Common mode Variation For 1GB/s-per Pin Operation,' ISCAS, vol. 1 pp. I- 1120-1123, May, 2004
  9. 박홍준, CMOS 아날로그 집적회로 설계(하), 시그마 프레스, pp.783-789, 1999
  10. Hwang-Cherng Chow and Wen-Wann Sheen, 'Low power LVDS circuit for serial data communications,' ISPACS Proceedings, pp. 293-296, Dec. 2005
  11. Jaeseo Lee, Jae-Won Lim, Sung-Jun Song, Sung-Sik Song, Wang-joo Lee, Hoi-Jun Yoo, 'Design and implementation of CMOS LVDS 2.5 Gb/s transmitter and 1.3 Gb/s receiver for optical interconnections,' IEEE ISCAS, vol. 4, pp.702-705, May, 2001