Robust Multiuser Detection Based on Least p-Norm State Space Filtering Model

  • Zha, Daifeng (College of Electronic Engineering, Jiujiang University)
  • Published : 2007.06.30

Abstract

Alpha stable distribution is better for modeling impulsive noises than Gaussian distribution in signal processing. This class of process has no closed form of probability density function and finite second order moments. In general, Wiener filter theory is not meaningful in S$\alpha$SG environments because the expectations may be unbounded. We proposed a new adaptive recursive least p-norm Kalman filtering algorithm based on least p-norm of innovation process with infinite variances, and a new robust multiuser detection method based on least p-norm Kalman filtering. The simulation experiments show that the proposed new algorithm is more robust than the conventional Kalman filtering multiuser detection algorithm.

Keywords

References

  1. C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications. New York: John Wiley & Sons Inc., 1995
  2. M. Shao and C. L. Nikias, 'Signal Processing with fractional lower order moments stable processes and their applications,' Proc. IEEE, vol. 81, no.7, pp. 986-1010, 1993 https://doi.org/10.1109/5.231338
  3. G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Process Stochastic Models with Infinite Variance. New York: Chapman and Hall, 1994
  4. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing. Upper Saddle River, NJ: Prentice Hall, 2000
  5. M. Pourahmadi, 'On minimality and interpolation of harmonizable stable processes,' SIAM J. Appl. Math., vol. 44, no. 5, Oct. 1984
  6. B. W. Stuck, 'Minimum error dispersion linear filtering of scalar symmetric stable processes,' IEEE Trans. Automat. Control, vol. AC-23, pp. 507-509, June 1978
  7. D. B. Cline and P. J. Brockwell, 'Linear prediction of arma processes with infinite variance,' Stoch. Process. Applicat., vol. 19, pp. 281-296, 1985 https://doi.org/10.1016/0304-4149(85)90030-4
  8. R. Yarlagadda, J. Schroeder, and J. Hershey, 'Lp normed minimization with applications to linear predictive modeling for sinusoidal frequency estimation,' Signal Process., vol. 24, no. 2, pp. 193-216, Sept. 1991 https://doi.org/10.1016/0165-1684(91)90131-2
  9. H.-Z. An and Z.-G. Chen, 'On convergence of LAD estimates in autoregression with infinite variance,' J. Multivariate Anal., vol. 12, pp. 335-345, 1982 https://doi.org/10.1016/0047-259X(82)90070-7
  10. E. Denoel and J. P. Solvay, 'Linear prediction of speech with a least absolute error criterion,' IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-33, no. 6 pp. 1397-1403, Dec. 1985
  11. S. Gross and W. L. Steiger, 'Least absolute deviation estimates in autoregression with infinite variance,' J. Appl. Prob., vol. 16, pp. 104-116, 1979 https://doi.org/10.2307/3213379
  12. J. Schroeder and R. Yarlagadda, 'Linear predictive spectral estimation via the 11 norm,' Signal Process., vol. 17, no. 1, pp. 19-29, 1989 https://doi.org/10.1016/0165-1684(89)90069-8
  13. T. Kailath, 'An innovations approach to least-squares estimation Part I: Linear filtering in additive white noise,' IEEE Trans. Autom. Control, vol. 13,no.6,pp.646-655,Dec.1968 https://doi.org/10.1109/TAC.1968.1099025
  14. S. S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996
  15. E. E. Kuruoglu, P. J. W. Rayner, and W. J. Fitzgerald, 'Least Lp-norm estimation of autoregressive model coefficients of symmetric a-stable processes,' IEEE Signal Process. Lett., vol. 4, no. 7, July 1997
  16. J. F. Weng and S. H. Leung, 'Adaptive nonlinear RLS algorithm for robust filtering in impulse noise,' in Proc. IEEE Int. Symp. Circuits Syst., vol. 4, 1997,pp.2337-2340
  17. S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge Univ. Press, 1998
  18. D. Middleton, 'Non-Gaussian noise models in signal processing for telecommunications: New methods and results for class A and class B noise models,' IEEE Trans. Inf. Theory, vol. 45, no. 10, pp. 1129-1149, Oct. 1999 https://doi.org/10.1109/18.761256
  19. H. V. Poor and M. Tanda, 'Multiuser detection in impulsive channels,' Ann. Telecommun., vol. 54, pp. 392-400, 1999
  20. T. C. Chuah, B. S. Sharif, and O. R. Hinton, 'Robust adaptive spreadspectrum receiver with neural net preprocessing in non-Gaussian noise,' IEEE Trans. Neural Netw., vol. 12, no. 3, 2001
  21. J. G. Gonzalez, 'Robust techniques for wireless communications in nonGaussian environments,' Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Delaware, Newark, DE, Dec. 1997
  22. T. C. Chuah, B. S. Sharif, and O. R. Hinton, 'Robust CDMA multiuser detection using a neural-network approach,' IEEE Neural Netw., vol. 13, no. 6, pp. 1532-1539, Nov. 2002 https://doi.org/10.1109/TNN.2002.804310
  23. S. Kapoor et al.. 'Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems,' IEEE Trans. Veh. Technol., vol. 48, no. 5, pp. 1341-1355, Sept. 1999 https://doi.org/10.1109/25.790508
  24. T. C. Chuah, B. S. Sharif, and O. R. Hinton, 'Nonlinear decorrelator for multiuser detection in non-Gaussian impulsive environments,' Electron. Lett .. vol. 36, no. 10, pp. 920-922, May 2000 https://doi.org/10.1049/el:20000656
  25. R. D. Pierce, 'RCS characterization using the alpha-stable distribution,' in Proc. IEEE Nat'l Radar Conf., 1996, pp. 154-159