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Abstract

A new evolution method termed queen-bee and mutant-bee evolution is based on the previous queen-bee evolution {1].
Even though the queen-bee evolution has shown very good performances, two parameters for strong mutation are added
to the genetic algorithms. This makes the application of genetic algorithms with queen-bee evolution difficult because the
values of the two parameters are empirically decided by a trial-and-error method without a systematic method. The queen-
bee and mutant-bee evolution has no this problem because it does not need additional parameters for strong mutation.
Experimental results with typical problems showed that the queen-bee and mutant-bee evolution produced nearly similar
results to the best ones of queen-bee evolution even though it didn’t need to select proper values of additional parameters.
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1. Introduction

The exploration and exploitation in genetic algorithms
are very important factors for improving the performances
of genetic algorithms [2, 3, 4, 5, 6, 7]. From this point of
view, we have introduced queen-bee evolution [1] for fast
evolution of individuals by employing strong exploitation
and strong exploration (in genetic algorithms, the crossover
operation is for exploitation and the mutation operation
is for exploration). This evolution has improved the per-
formances of genetic algorithms about 200 times to 1,000
times than the simple genetic algorithms. However, it needs
two additional parameters for strong mutation in order to
control the exploration. This is a very critical drawback
of the method because the two parameters ranged from O
to 1 greatly affects the performances of genetic algorithms
and there is no systematic method to decide proper values.
Currently, only trial-and-error method, which is a very inef-
fective and time-consuming task, can be used for selecting
proper values.

In this paper, we propose a new evolution method called
queen-bee and mutant-bee evolution in order to overcome
this problem. The proposed method does not need the two
parameters for strong mutation no more. In the queen-
bee and mutant-bee evolution, we adopt mutant-bees, the
strongly mutated individuals. These mutant-bees for strong

exploration are recombined with the queen-bees for strong
exploitation to generate offsprings. In the previous queen-
bee evolution, the queen-bee, the fittest individual, is re-
combined with the normal individuals and the offsprings
are strongly mutated by the two parameters, strong mu-
tation rate and strong mutation probability. However, the
normal individuals in the queen-bee and mutant-bee evolu-
tion are first strongly mutated without additional parame-
ters and then the strongly mutated individuals are recom-
bined with the queen-bee.

Since the recombined individuals are strongly mutated
in the queen-bee evolution, the good schema of recom-
bined individuals can be destroyed. On the other hands, the
good schema of queen-bee may be inherited in the queen-
bee and mutant-bee evolution because selected individu-
als are first strongly mutated and then recombined with the
queen-bee. The selected individuals are strongly mutated
by the inversion of half most significant strings of them
without the other parameters. The proposed method has
been tested with typical four optimization problems that
have been used previous papers [8, 9, 1]. It was shown
from the experiments that the performances of the queen-
bee and mutant-bee evolution were very similar to the best
performances of the queen-bee evolution.

This paper is organized as follows. Section 2 describes
the proposed queen-bee and mutant-bee evolution. In sec-
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tion 3, experimental parameters and results are discussed.
This paper concludes in sec:ion 4.

2. Queen-bee and Mutant-bee Evolution

In order to certainly compare the previous queen-bee
evolution and the proposed queen-bee and mutant-bee evo-
lution, we describe them in Algorithm 1 and in Algorithm
2, respectively. The newly added or modified operations
to the simple genetic algor.thm are marked by A for the
queen-bee evolution and M for the queen-bee and mutant-
bee evolution, respectively. In both evolution methods,
from the first to the selection of parents to generate off-
springs are sama as shown in the Algorithms 1 and 2. Par-
ents are composed of the pair of queen-bee I(¢ — 1) and
selected individuals I,,, (¢t — 1) by a selection method such
as roulette wheel selection and rank selection. In queen-bee
evolution, those parents are recombined and then strongly
mutated with the strong mutation rate £ and strong mu-
tation probability p;n. On the other hand, in queen-bee
and mutant-bee evolution “he individuals I, (¢ — 1) are
strongly mutated by inverting their half most significant
bits of strings before recorabination. For example, the 8
bits of an individual, 01100111, is inverted to 10010111.
The strongly mutated individuals I,,,(t — 1)* (strong ex-
ploration) are rzcombined ‘with the queen-bee (strong ex-
ploitation) to generate offsprings.

Algorithm 1 Queen-bee evolution
/[t time //
// n : population size //
/I P : popula:ions //
/1 € : normal mutation rate’/
/l pm : normal mutation probability //
/! p'm : strong mutation probability //
I/ I . a queea-bee individual/
!l I, : normal individuals /
t+ 0
initialize P(1)
evaluate P(t)
while (not termination-condition)
do
tet+1
select P(t) from P(t — 1) (&)
P(t) = {(o(t — 1), In(t — 1))}
recombine P(t)
do crossover
do mutation (A)
fori =1tor.
ifi < (£ x n)
do nritation with p,,
else
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16 do mutation with pin
17 end if

18 end for

19 evaluate P(t)

20 end

Algorithm 2 Queen-bee and Mutant-bee evolution
/'t time //

// m : population size //

/I P : populations //

/I I : a queen-bee individual/

/! Iy, : normal individuals //

/1 I;, : inverted individuals (mutant-bees) /

t« 0

1

2 initialize P(¢)

3 evaluate P(t)

4 while (not termination-condition)

5 do

6 te—t+1

7 select P(t) from P(t — 1) (W)

8 P(t) = {(I,(t = 1), In(t — 1))}
9 make mutant-bees ()

10 invert I, (t — 1) to I, (¢ — 1)*
11 set P(¢) = {I,(t — 1), In(t - 1)}
12 recombine P(t)

13 do crossover

14 do mutation

15 evaluate P(t)

16 end

Intuitively, the queen-bee and mutant-bee evolution is
better than the previous queen-bee evolution in that it rel-
atively keeps the good schema of good individuals in the
previous generation. In the queen-bee evolution, the good
schema of recombined individuals may be destroyed by
strong mutation because the strong mutation is done after
crossover operation. Whereas the mutant-bees are recom-
bined with the queen-bees in the queen-bee and mutant-bee
evolution, the good schema of queen-bees can be relatively
inherited to the offsprings. This is an advantage of pro-
posed evolution method.

Moreover, the queen-bee and mutant-bee evolution
does not need additional parameters such as £ and p'm
which are empirically selected by a trial-and-error method
without systematic decision methods. This is main ad-
vantage of the proposed method compared to the previ-
ous method. Even though the queen-bee and mutant-bee
evolution is very simple and has no additional parameters,
it shows nearly same performances to the best results of
queen-bee evolution as shown in next section.

3. Experimental Results
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Table 1: Parameters for experiments

Parameters

|

Values

]

Selection method
Crossover probability (p.)
Mutation probability (p,,,)
Population size
Individual length

roulette wheel selection
0.6
0.05
10
24 bits

The proposed method was tested on typical four func-
tion optimization problems “hat have been used at previous
papers [8, 9, 1]. All functiors except for f; are function op-
timization problems. On the other hand, the function fq, a
bit pattern matching problein, is a combinatorial optimiza-
tion problem between the target pattern 7' and an individ-
ual’s pattern 7. If all bits between T' and I are same, then
it is optimum. Therefore, optimum fitness is same as the
number of bits k. Functions f; to f4 are DeJong function
2 (f2), Mexican hat functicn (f3), Shafer function 2 (fy),
respectively.

Figure 1 shows the input-output relations of four func-
tions. Function f» is relative simple in that it has a few lo-
cal optimum; unlike function f,, functions f3 and f4 have
many local optimum in continuous spaces. The optimum
value of fs is only one at £y = —2.048 and 2, = —2.048
and optimum value is about 3905.9 and local optimum is at
1 = 2.048 and 23 = —2.048. The function f3 has only
one global optimum (its value is about 0.99) at the center
of the smallest circle of Mexican hat. But the f3 has many
local optima around the smallest circle of Mexican hat. It
is very difficult for genetic algorithms to come out the lo-
cal optimum because the values of local optima are very
close to that of global optimum. On the other hands, func-
tion f4 has multiple optima at four peaks near (z; 10
and z2 = —1C, ;1 = —1J and 23 = 10, 2y = 10 and
o = —10, z; = 10 and 25 = 10) and its value is about
14.3. Similar to the f3, f4 has many local optima inside the
four peaks.

The parameters of genetic algorithms for experiments
are shown in Table 1. W: used typical parameters that
have been used at a lot of previous works. Experimental
results are shown in Table 2. All results in the Table 2 are
average values of 10 runs with different random number
seeds. In Table 2, avg., dev., NE, QBE, and QBMB mean
average values of 10 runs, standard deviation of 10 runs,
normal evolution used in the simple genetic algorithm, the
queen-bee evolution [1], and the queen-bee and mutant-
bee evolution, respectively Note that the QBMB outper-
forms NE of original genstic algorithm in all functions
and shows similar performances to the best of QBE. Since
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selected individuals as parents in queen-bee evolution are
first recombined and then strongly mutated, the offsprings
are mainly affected by the strong mutation. This makes
the queen-bee evolution dependent on the strong mutation
rate and strong mutation probability. However, the queen-
bee and mutant-bee evolution shows relatively stable and
good performances because its strong mutation method is
more simple than the queen-bee evolution and generated
offsprings are not affected by the strong mutation unlike the
queen-bee evolution. This makes it possible for QBMB to
keep the good schema of the queen-bee, whereas the good
schema of the queen-bee can be destroyed at the QBE.

4. Conclusion

In this paper, we proposed a new evolution method,
queen-bee and mutant-bee evolution. It was found from
experiments that the proposed evolution showed very simi-
lar results to the best ones of the queen-bee evolution even
though the proposed evolution does not need selecting of
proper values of additional two parameters by a trial-and-
error method. This indicates that the proposed method can
be largely applied to existing genetic algorithms for im-
proving their performances with simple modification and
without additional efforts.
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