Nonlinear Focusing Wave Group on Current

흐름의 영향을 받는 파랑 그룹의 비선형 집중

  • Touboul, Julien (Institut de Recherche sur les Phenomenes Hors Equilibre (IRPHE)) ;
  • Pelinovsky, Efim (Department of Nonlinear Geophysical Processes, Institute of Applied Physics) ;
  • Kharif, Christian (Institut de Recherche sur les Phenomenes Hors Equilibre (IRPHE))
  • Published : 2007.06.30

Abstract

Formation of freak waves is studied in deep water from transient wave packets propagating on current. Those waves are obtained by means of dispersive focusing. This process is investigated by solving both linear and nonlinear equations. The role of nonlinearity is emphasized in this interaction.

심해에서 생성된 최극해파가 파랑과 상호작용하는 현상에 대한 연구를 수행하였다. 이러한 파랑은 분산집중을 이용하여 산정하였다. 이러한 과정은 선형 및 비선형 방정식의 해를 구하여 얻을 수 있다. 상호작용에서 비선형성의 역할을 강조하였다.

Keywords

References

  1. Kharif, C., Pelinovsky, E., Talipova, T. and Slunyaev, A. (2001). Focusing of nonlinear wave groups in deep water, JETP Letters, vol. 73, No. 4, 170-175 https://doi.org/10.1134/1.1368708
  2. Johannessen, T.B. and Swan, C. (2003). On the nonlinear dynamics of wave groups produced by the focusing of surface water waves, Proc. R. Soc. London, vol. A459, 1021-1052
  3. Gibson, R.S. and Swan, C. The evolution of large ocean waves: the role of local and rapid spectral changes, submitted to Proc. Royal Soc. London
  4. Benjamin, T. and Feir, J. (1967). The desintegration of wave train on deep water, J. Fluid Mech. vol. 27, 417-430 https://doi.org/10.1017/S002211206700045X
  5. Dyachenko, A.I. and Zakharov, V.E. (2005). Modulation instability of Stokes waves - freak wave, JETP Letters, vol. 81, 6, 255-259 https://doi.org/10.1134/1.1931010
  6. Clamond, D. and Grue, J. (2002). Interaction between envelope solitons as a model for freak wave formations. Part I: Long time interaction C. R. Mecanique, vol. 330, 575-580 https://doi.org/10.1016/S1631-0721(02)01496-1
  7. Kharif, C. and Pelinovsky, E. (2003). Physical mechanisms of the rogue wave formation, European J. Mech. B/Fluids, vol. 22, 603-634 https://doi.org/10.1016/j.euromechflu.2003.09.002
  8. Dysthe, K.B. (2001). Modelling a Rogue Wave - Speculations or a realistic possibility?, Rogue Waves, Brest, Ed. by M. Olagnon, and G.A. Athanassoulis, 255-264
  9. Peregrine, D.H. (1976). Interaction of water waves and currents, Adv. Appl. Mech., vol. 16, 9-117 https://doi.org/10.1016/S0065-2156(08)70087-5
  10. Smith, R. (1976). Giant waves, J. Fluid Mech. vol. 77, 417-131 https://doi.org/10.1017/S002211207600219X
  11. Craik, A.D.D. (1985). Wave interactions and fluid flows, Cambridge University Press
  12. Thomas, G.P. (1981). Wave-current interactions: an experimental and numerical study. Part I: linear waves, J. Fluid Mech., vol. 110, 457-474 https://doi.org/10.1017/S0022112081000839
  13. Thomas, G.P. (1990). Wave-current interactions: an experimental and numerical study. Part II: nonlinear waves, J. Fluid Mech., vol. 216, 505-536 https://doi.org/10.1017/S0022112090000519
  14. Teles da Silva, A.F. and Peregrine, D.H. (1988). Steep, steady surface waves on water of finite depth with constant vorticity, J. Fluid Mech., vol. 195, 281-302 https://doi.org/10.1017/S0022112088002423
  15. Shrira, V.I. and Sazonov, I.A. (2001). Quasi-modes in boundary-layer-type flows. Part 1. Inviscid two-dimensional spatially harmonic perturbations, J. Fluid Mech., vol. 446, 133-171
  16. Lavrenov, I.V. (1998). The wave energy concentration at the Agulhas current of South Africa, Natural Hazards, vol. 17, 117-127 https://doi.org/10.1023/A:1007978326982
  17. White, B.S. and Fornberg, B. (1998). On the chance of freak waves at sea, J. Fluid Mech., vol. 355, 113-138 https://doi.org/10.1017/S0022112097007751
  18. Wu, C.H. and Yao, A. (2004). Laboratory measurements of limiting freak waves on current, J. Geophys. Res., vol. 109, C12002, doi:10.1029/2004JC002612
  19. Ryu, S., Kim, M.H. and Lynett, P.J. (2003). Fully nonlinear wave-current interactions and kinematics by a BEM-based numerical wave tank, Comp. Mech., vol. 32, 336346
  20. Brown, M.G. and Jensen, A. (2001). Experiments on focusing unidirectional water waves, J. Geophys. Res., vol. 108, No. C8, 16917-16928
  21. Whitham, G.B. (1974). Linear and nonlinear waves, Wiley
  22. Brown, M.G. (2001). Space-time surface gravity wave caustics: structurally stable extreme events, Wave Motion, vol. 33, 117-143 https://doi.org/10.1016/S0165-2125(00)00054-8
  23. Touboul, J., Giovanangeli, J.P., Kharif, C. and Pelinovsky, E. (2006). Freak waves under the action of wind: experiments and simulations, European J. Mech. B/Fluids, vol. 25, 662-676 https://doi.org/10.1016/j.euromechflu.2006.02.006
  24. Zhu, S. and Zhang, Y. (1997). On nonlinear transient free-surface flows over a bottom obstruction, Phys. Fluids, vol. 9, 2598-2604 https://doi.org/10.1063/1.869376