PCA Covariance Model Based on Multiband for Speaker Verification

화자 확인을 위한 다중대역에 기반한 주성분 분석 공분산 모델

  • Published : 2007.06.30

Abstract

Feature vectors of speech are generally extracted from whole frequency domain. The inherent character of a speaker is located in the low band or high band frequency. However, if the speech is corrupted by narrowband noise with concentrated energy, speaker verification performance is reduced as the individual characteristic is removed. In this paper, we propose a PCA Covariance Model based on the multiband to extract the robust feature vectors against the narrowband noise. First, we divide the overall frequency band into several subbands. Second, the correlation of feature vectors extracted independently from each subband is removed by PCA. The distance obtained from each subband has different distribution. To normalize against the different distribution, we moved the value into the normalized distribution through the mapping function. Finally, the represented value applying the weighting function is used for speaker verification. In the experiments, the proposed method shows better performance of the speaker verification and reduces the computation.

Keywords