DOI QR코드

DOI QR Code

The Compound Refractive Lens for Hard X-ray Focusing

  • Choi, J. (Photonics Lab., Department of Physics, Dankook University) ;
  • Jung, J. (Photonics Lab., Department of Physics, Dankook University) ;
  • Park, S. (Photonics Lab., Department of Physics, Dankook University) ;
  • Kwon, T. (Photonics Lab., Department of Physics, Dankook University)
  • 투고 : 2007.05.21
  • 발행 : 2007.06.25

초록

The compound refractive X-ray lens (CRL) for focusing hard X-rays is investigated to determine the parameters such as the focal length, the focal spot size, and spatial distribution at the focal spot using a simple theoretical calculations and CRLs fabricated by the self-assembly method. The number of individual compound lenses are defined for the given focal length of 1 m. The X-ray energy of 1 to 40 keV is used in the calculations. The CRL for focusing hard X-rays which generated from the X-ray tube is fabricated by nanoparticle-polymer composite in the form of circular concaves. The self-assembly method is applied to form the nanoaluminum-poly (methly meth-acrylate) composite and carbon-polymer composite CRL lenses. Aluminum nanoparticles of 100 nm and carbon microparticles are diffused in the polymer solution then the high gravity up to 6000G is applied in it to form the concave lens shape. X-ray energy at 8 keV is used for characterization of the composite CRLs. The FWHM of intensity for the fabricated nanoaluminium composite CRL system, N=10 is measured as 1.8 mm, which would give about $70{\mu}m$ in FWHM at 1 m of the focal length.

키워드

참고문헌

  1. C. Schroer, J. Meyer, M. Kuhlmann, B. Benner, T. F. Gunzler, and B. Lengeler, 'Nanotomography based on hard x-ray microscopy with refractive lenses,' Appl. Phys. Lett., vol. 81, pp. 1527-1529, 2002 https://doi.org/10.1063/1.1501451
  2. O. Hignette, G. Rostaing, P. Cloetens, A. Rommevaux, W. Ludwig, and A. Freund, 'Submicron focussing of hard X-rays with reflecting surfaces at the ESRF.' SPIE Conference Proceedings, vol. 4499, pp. 105-116, 2001
  3. W. Yun, et al., 'Development of Zone Plates with a Blazed Profile for Hard X-ray Applications,' Rev. Sci. Instrum., vol. 70, pp. 3537-3541, 1999 https://doi.org/10.1063/1.1149956
  4. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, 'A compound refractive lens for focusing high-energy Xrays,' Nature, vol. 384, pp. 49-51, 1996 https://doi.org/10.1038/384049a0
  5. D. Bilderback, S. Hohman, and D. Thiel, 'Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,' Science, vol. 263, pp. 201-203, 1994 https://doi.org/10.1126/science.8284671
  6. Kinraide, R., Moore, C. J., Jacobs, K. D., Severson, M., Bissen, M. J., Frazer, B., Bisognano, J. J., Bosch, R. A., Eisert, D., Fisher, M., Green, M. A., Gundelach, C. T., Hansen, R. W. C., Hochst, H., Julian, R. L., Keil, R., Kleman, K., Kubala, T., Legg, R. A., Pedley, B., Rogers, G. C., Stott, J. P., Wallace, D. J., Wehlitz, R., Wiese, L. M., Taylor, J., Campuzano, J. C., and de Stasio, G, 'Current Status of the Synchrotron Radiation Center,' Synchrotron Radiation Insrumentation, AIP conf. proc. No. 705. 2004 https://doi.org/10.1063/1.1757746
  7. J. Wang, A. K. Sood, P. V. Satyam, Y. Feng, X.-Z. Wu, Z. Cai, W. Yun, and S. K. Sinha, 'X-ray Fluorescence Correlation Spectroscopy: A Method for Studying Particle Dynamics in Condensed Matter,' Phys. Rev. Lett. vol. 80, pp. 1110-1113, 1998 https://doi.org/10.1103/PhysRevLett.80.1110
  8. K. Robinson, F. Pfeiffer, I. Vartanyants, Y. Sun, and Y. Xia, 'Enhancement of coherent X-ray diffraction from nanocrystals by introduction of X-ray optics,' Opt. Express, vol. 11, pp. 2329-2334, 2003 https://doi.org/10.1364/OE.11.002329
  9. B. Lengeler, J. Tummler, A. Snigirev, I. Snigireva, and C. Raven, 'Transmission and gain of singly and doubly focusing refractive X-ray lenses,' J. Appl Phys., vol. 84, pp. 5855-5861, 1998 https://doi.org/10.1063/1.368899
  10. B. Lengeler, C. G. Schroer, B. Benner, T. F. Gunzler, M. Kuhlmann, J. Tummler, A. S. Simionovici, M. Drakopoulos, A. Snigirev, and I. Snigireva., 'Parabolic refractive X-ray lenses: a breakthrough in X-ray optics,' Nuclear inst. and method, vol. A467-468, pp. 944-951. 2001 https://doi.org/10.1016/S0168-9002(01)00531-9
  11. J. J. Watkins and J. McCowthy, 'New Approaches to Polymer Modification,' Society of Plastics Engineers Incorporated, vol. 3, pp. 2506-2510, 1995
  12. T.-Y. Tsai, C.-H. Li, C.-H. Chang, W.-H. Cheng, C.-L. Hwang, and R.-J. Wu, 'Preparation of Exfoliated Polyester/ Clay Nanocomposite,' Advanced materials, vol. 17, no. 14, pp. 1769-1773, 2005 https://doi.org/10.1002/adma.200401260
  13. H. Weller, 'Quantized semiconductor particles: A novel state of matter for materials science,' Adv. Mater. vol. 5, pp. 88-95, 1993 https://doi.org/10.1002/adma.19930050204
  14. E. Bourgeat-Lami, P. Espiard, and A. Guyot, 'Poly (ethyl acrylate) latexes encapsulating nanoparticles of silica: 1. Functionalization and dispersion of silica,' Polymer, vol. 36, pp. 4385, 1995 https://doi.org/10.1016/0032-3861(95)96843-W
  15. Albert Thompson, X-ray data Booklet, (Center for Xray Optics and Advanced Light Source), 2001
  16. V. V. Protpopov and K. A. Valiev, 'Theory of an ideal Compound X-ray lens,' Optics Comm. vol. 151, pp. 297- 312, 1998 https://doi.org/10.1016/S0030-4018(98)00009-1
  17. M. Born and E. Wolf, Principle of Optics, (Pergamon, New York) 1968