DOI QR코드

DOI QR Code

9.6 dB Gain at a 1310 nm Wavelength for a Bismuth-doped Fiber Amplifier

  • Received : 2007.06.05
  • Published : 2007.06.25

Abstract

A 9.6 dB gain is observed at 1310 nm in a 5.0 cm bismuth-doped silica fiber. A launched pump power of 100 mW was obtained using an 810-nm laser diode. We demonstrated the simultaneous optical amplification at two wavelengths near second telecommunication windows, which is the range of zero-dispersion for silica fibers.

Keywords

References

  1. C.-R. Yang and W.-W. Kim, 'GC-EDFA for a Burst Packet Mode Optical Switching System,' J. Opt. Soc. Korea, vol. 11, pp. 44-48, 2007 https://doi.org/10.3807/JOSK.2007.11.1.044
  2. Y. Fujimoto and M. Nakatsuka, 'Infrared Luminescence from Bismuth-Doped Silica Glass,' Jpn. J. Appl. Phys., vol. 40, pp. L279-L281, 2001 https://doi.org/10.1143/JJAP.40.L279
  3. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, 'Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,' Opt. Lett., vol. 29, pp. 1998-2000, 2004 https://doi.org/10.1364/OL.29.001998
  4. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, 'Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,' Opt. Lett., vol. 30, pp. 2433-2435, 2005 https://doi.org/10.1364/OL.30.002433
  5. X. Meng, J. Qui, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, 'Near infrared broadband emission of bismuth-doped aluminophosphate glass,' Opt. Express, vol. 13, pp. 1628-1634, 2005 https://doi.org/10.1364/OPEX.13.001628
  6. X. Meng, J. Qui, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, 'Infrared broadband emission of bismuthdoped barium-aluminum-borate glasses,' Opt. Express, vol. 13, pp. 1635-1642, 2005 https://doi.org/10.1364/OPEX.13.001635
  7. M. Peng, C. Wang, D. Chen, X. Jiang, and C. Zhu, 'Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,' J. Non-Cryst. Solids, vol. 351, pp. 2388-2393, 2005 https://doi.org/10.1016/j.jnoncrysol.2005.06.033
  8. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, 'Broadband infrared luminescence from $Li_2O-Al_2O_3-ZnO-SiO_2$ glasses doped with $Bi_2O_3$,' Opt. Express, vol. 13, pp. 6892-6898, 2005 https://doi.org/10.1364/OPEX.13.001635
  9. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, 'Absorption, Fluorescence and Optical Amplification in MCVD Bismuth-Doped Silica Glass Optical Fibres,' in proc. 31st ECOC, Glasgow, Scotland, Paper Th3.3.5, vol. 4, pp. 949-950, 2005
  10. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, 'Bi- Doped Silica Fibers: A New Active Medium for Tunable Fiber Lasers and Broadband Fiber Amplifiers,' OFC/NFOEC 2006, San Diego, USA, Paper OTuH4, 2006 https://doi.org/10.1109/OFC.2006.215390
  11. T. Suzuki and Y. Ohishi, 'Ultrabroadband near-infrared emission from Bi-doped $Li_2O-Al_2O_3-SiO_2$ glass,' Appl. Phys. Lett., vol. 88, pp. 191912.1-191912.3, 2006 https://doi.org/10.1063/1.2203214
  12. Y. Fujimoto, K. Murata, and M. Nakatsuka, 'New material for high average power laser based on silica glass,' Fusion Eng. Des., vol. 44, pp. 431-435, 1999 https://doi.org/10.1016/S0920-3796(98)00279-8
  13. M. Nakatsuka, H. Yoshida, Y. Fujimoto, K. Fujioka, and H. Fujita, 'Recent Topics in Engineering for Solid- State Peak-Power Lasers in Repetitive Operation,' J. Korean Phys. Soc., vol. 43, pp. 607-615, 2003
  14. Y. Fujimoto and M. Nakatsuka, 'Optical amplification in bismuth-doped silica glass,' Appl. Phys. Lett., vol. 82, pp. 3325-3326, 2003 https://doi.org/10.1063/1.1575492
  15. Y. Fujimoto and M. Nakatsuka, 'Spectroscopic analysis of bismuth and aluminum co-doped silica glass emitting 1000-1600 nm radiation,' XX International Congress on Glass 2004, Kyoto, Japan, Paper O-07-077, 2004
  16. Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, 'Simultaneous Amplification at Two Wavelengths Near 1300 nm in a 6.5-cm-Long Bismuth-Doped Silica Glass,' IEEE Photon. Technol. Lett., vol. 18, pp. 1901-1903, 2006 https://doi.org/10.1109/LPT.2006.881649
  17. Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, 'Optical amplification in a bismuth-doped silica glass at 1300 nm telecommunications window,' Opt. Commun., vol. 266, pp. 169-171, 2006 https://doi.org/10.1016/j.optcom.2006.04.043
  18. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, 'CW bismuth fibre laser,' Quantum Electronics, vol. 35, pp. 1083-1084, 2005 https://doi.org/10.1070/QE2005v035n12ABEH013092
  19. V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, 'Yb-Bi pulsed fiber lasers,' Opt. Lett., vol. 32, pp. 451-453, 2007 https://doi.org/10.1364/OL.32.000451
  20. Y.-S. Seo, Y. Fujimoto, and M. Nakatsuka, 'Optical amplification in a bismuth-doped silica fiber,' Proceedings of SPIE, vol. 6351, pp. 63512C.1-63512C.8, 2006 https://doi.org/10.1117/12.691280
  21. S. Kishimoto, M. Tsuda, K. Sakaguchi, Y. Fujimoto, and M. Nakatsuka, 'Novel bismuth-doped optical amplifiers for 1.3-micron telecommunication band,' XX International Congress on Glass 2004, Kyoto, Japan, Paper O-14-029, 2004
  22. Y. Fujimoto and M. Nakatsuka, '$^{27}Al$ NMR structural study on aluminum coordination state in bismuth doped silica glass,' J. Non-Cryst. Solids, vol. 352, pp. 2254-2258, 2006 https://doi.org/10.1016/j.jnoncrysol.2006.02.047

Cited by

  1. Properties of epoxy novolak resin layers doped with bismuth for photoluminescence near 1300 nm 2010, https://doi.org/10.1002/app.32039
  2. PbS Quantum Dots Filled Photonic Crystal Fiber for All-fiber Amplifier vol.844, 2017, https://doi.org/10.1088/1742-6596/844/1/012060
  3. Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology vol.47, pp.27, 2008, https://doi.org/10.1364/AO.47.004940
  4. Bi-doped fiber lasers vol.6, pp.7, 2009, https://doi.org/10.1002/lapl.200910025
  5. Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass vol.32, pp.9, 2010, https://doi.org/10.1016/j.optmat.2010.02.025
  6. $O$-Band Bismuth-Doped Fiber Amplifier With Double-Pass Configuration vol.23, pp.24, 2011, https://doi.org/10.1109/LPT.2011.2170160
  7. Bi-doped fiber amplifier with a flat gain of 25  dB operating in the wavelength band 1320–1360  nm vol.41, pp.7, 2016, https://doi.org/10.1364/OL.41.001518
  8. Bismuth fiber integrated laser mode-locked by carbon nanotubes vol.7, pp.11, 2010, https://doi.org/10.1002/lapl.201010067
  9. Amplification of picosecond pulses and gigahertz signals in bismuth-doped fiber amplifiers vol.36, pp.8, 2011, https://doi.org/10.1364/OL.36.001446
  10. Time-resolved spectroscopy and optical gain of silica-based fibers co-doped with Bi, Al and/or Ge, P, and Ti vol.19, pp.4, 2009, https://doi.org/10.1134/S1054660X09040501
  11. Bi-Doped Optical Fibers and Fiber Lasers vol.20, pp.5, 2014, https://doi.org/10.1109/JSTQE.2014.2312926