Biochemical Analysis on the Parallel Pathways of Methionine Biosynthesis in Corynebacterium glutamicum

  • Hwang, Byung-Joon (Graduate School of Biotechnology, Korea University) ;
  • Park, Soo-Dong (Graduate School of Biotechnology, Korea University) ;
  • Kim, Youn-Hee (Department of Oriental Medicine, Semyung University) ;
  • Kim, Pil (Division of Biotechnology, The Catholic University of Korea) ;
  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
  • Published : 2007.06.30

Abstract

Two alternative pathways for methionine biosynthesis are known in Corynebacterium glutamicum: one involving transsulfuration (mediated by metB and metC) and the other involving direct sulfhydrylation (mediated by metY). In this study, MetB (cystathionine ${\gamma}-synthase$) and MetY (O-acetylhomoserine sulfhydrylase) from C. glutamicum were purified to homogeneity and the biochemical parameters were compared to assess the functional and evolutionary importance of each pathway. The molecular masses of the native MetB and MetY proteins were measured to be approximately 170 and 280 kDa, respectively, showing that MetB was a homotetramer of 40-kDa subunits and MetY was a homohexamer of 45-kDa subunits. The $K_m$ values for the O-acetylhomoserine catalysis effected by MetB and MetY were 3.9 and 6.4 mM, and the maximum catalysis rates were $7.4\;(k_{cat}=21\;S^{-1})\;and\;6.0\;(k_{cat}=28\;S^{-1})\;{\mu}mol\;mg^{-1}\;min^{-1}$, respectively. This suggests that both MetB and MetY can be comparably active in vivo. Nevertheless, the $K_m$ value for sulfide ions by MetY was 8.6mM, which was too high, considering the physiological condition. Moreover, MetB was active at a broad range of temperatures $(30\;and\;65^{\circ}C)$ and pH (6.5 and 10.0), as compared with MetY, which was active in a range from 30 to $45^{\circ}C$ and at pH values from 7.0 to 8.5. In addition, MetY was inhibited by methionine, but MetB was not. These biochemical data may provide insight on the role of the parallel pathways of methionine biosynthesis in C. glutamicum with regard to cell physiology and evolution.

Keywords

References

  1. Alaminos, M. and J. L. Ramos. 2001. The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH, and metE gene products. Arch. Microbiol. 176: 151-154 https://doi.org/10.1007/s002030100293
  2. Bendt, A. K., A. Burkovski, S. Schaffer, M. Bott, M. Farwick, and T. Hermann. 2003. Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3: 1637-1646 https://doi.org/10.1002/pmic.200300494
  3. Born, T. L. and J. S. Blanchard. 1999. Enzyme-catalyzed acylation of homoserine: Mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38: 14416-14423 https://doi.org/10.1021/bi991710o
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Chong, Y., J. Young, J. Kim, Y. Lee, K.-S. Park, J.-H. Cho, H.-J. Kwon, J.-W. Suh, and Y. Lim. 2006. S-Adenosyl- L-methionine analogues to enhance the production of actinorhodin. J. Microbiol. Biotechnol. 16: 1154-1157
  6. Foglino, M., F. Borne, M. Bally, G. Ball, and J. C. Patte. 1995. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141: 431-439 https://doi.org/10.1099/13500872-141-2-431
  7. Follettie, M. T., O. P. Peoples, C. Agoropoulou, and A. J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J Bacteriol. 175: 4096-4103 https://doi.org/10.1128/jb.175.13.4096-4103.1993
  8. Hacham, Y., U. Gophna, and R. Amir. 2003. In vivo analysis of various substrates utilized by cystathionine $\gamma$-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol. Biol. Evol. 20: 1513-1520 https://doi.org/10.1093/molbev/msg169
  9. Hwang, B.-J., Y. Kim, H.-B. Kim, H.-J. Hwang, J.-H. Kim, and H.-S. Lee. 1999. Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: Isolation and analysis of metB encoding cystathionine $\gamma-synthase$. Mol. Cells 9: 300- 308
  10. Hwang, B.-J., H.-J. Yeom, Y. Kim, and H. S. Lee. 2002. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J. Bacteriol. 184: 1277-1286 https://doi.org/10.1128/JB.184.5.1277-1286.2002
  11. Kanzaki, H., M. Kobayashi, T. Nagasawa, and H. M. Yamada. 1986. Distribution of the two kinds of cystathionine $\gamma- synthase$ in various bacteria. FEMS Microbiol. Lett. 33: 65- 68
  12. Kase, H. and K. Nakayama. 1974. The regulation of Lmethionine synthesis and the properties of cystathionine $\gamma- synthase$ and ${\beta} -cystathionase$ in Corynebacterium glutamicum. Agric. Biol. Chem. 38: 2235-2242 https://doi.org/10.1271/bbb1961.38.2235
  13. Kim, H. M., E. Heinzle, and C. Wittmann. 2006. Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J. Microbiol. Biotechnol. 16: 1174-1179
  14. Kim, J.-W., H.-J. Kim, Y. Kim, M.-S. Lee, and H.-S. Lee. 2001. Properties of the Corynebacterium glutamicum metC gene encoding cystathionine b-lyase. Mol. Cells 11: 220-225
  15. Kredich, N. M. and G. M. Tomkins. 1966. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J. Biol. Chem. 241: 4955-4965
  16. Laemmli, U. K. 1970. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  17. Lee, H.-S. 2005. Sulfur metabolism and its regulation, pp. 351-376. In L. Eggeling and M. Bott (eds.). Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL
  18. Lee, H.-S. and B.-J. Hwang. 2003. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: Parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol. 62: 459-467 https://doi.org/10.1007/s00253-003-1306-7
  19. Marzluf, G. A. 1997. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu. Rev. Microbiol. 51: 73-96 https://doi.org/10.1146/annurev.micro.51.1.73
  20. Miyajima, R. and I. Shiio. 1973. Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VII. Properties of homoserine O-transacetylase. J. Biochem. 73: 1061-1068 https://doi.org/10.1093/oxfordjournals.jbchem.a130160
  21. Nagai, S. and M. Flavin. 1971. Synthesis of Oacetylhomoserine. Methods Enzymol. 17B: 423-424
  22. Ozaki, H. and I. Shiio. 1982. I. Methionine biosynthesis in Brevibacterium flavum: Properties and essential role of Oacetylhomoserine sulfhydrylase. J. Biochem. 91: 1163-1171 https://doi.org/10.1093/oxfordjournals.jbchem.a133799
  23. Park, S.-D., J.-Y. Lee, Y. Kim, J.-H. Kim, and H-S. Lee. 1998. Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol. Cells 8: 286-294
  24. Picardeau, M., H. Bauby, and I. Saint Girons. 2003. Genetic evidence for the existence of two pathways for the biosynthesis of methionine in the Leptospira spp. FEMS Microbiol. Lett. 225: 257-262 https://doi.org/10.1016/S0378-1097(03)00529-9
  25. Ravanel. S., M. Droux, and R. Douce. 1995. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine $\gamma$-synthase from spinach chloroplasts. Arch. Biochem. Biophys. 316: 572-584 https://doi.org/10.1006/abbi.1995.1077
  26. Rey, D. A., A. Puhler, and J. Kalinowski. 2003. The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J. Biotechnol. 103: 51-65 https://doi.org/10.1016/S0168-1656(03)00073-7
  27. Ron, E. Z. and M. Shani. 1971. Growth rate of Escherichia coli at elevated temperatures: Reversible inhibition of homoserine trans-succinylase. J. Bacteriol. 107: 397-400
  28. Rossol, I. and A. Puhler. 1992. The Corynebacterium glutamicum aecD gene encodes a C-S lyase with ${\alpha},{\beta}$ elimination activity that degrades aminoethylcysteine. J. Bacteriol. 174: 2968-2977 https://doi.org/10.1128/jb.174.9.2968-2977.1992
  29. Schrumpf, B., A. Schwarzer, J. Kalinowski, A. Puhler, L. Eggeling, and H. Sahm. 1991. A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J. Bacteriol. 173: 4510-4516 https://doi.org/10.1128/jb.173.14.4510-4516.1991
  30. Simon, M. and J.-S. Hong. 1983. Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli: An alternate pathway that bypasses cystathionine. J. Bacteriol. 153: 558-561
  31. Smith, D. A. 1971. S-Amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv. Genet. 16: 141-165 https://doi.org/10.1016/S0065-2660(08)60357-0
  32. Smith, D. A., T. Parish, N. G. Stoker, and G. J. Bancroft. 2001. Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect. Immun. 69: 1142-1150 https://doi.org/10.1128/IAI.69.2.1442-1150.2001
  33. Song, K. H., D. Y. Kwon, S. Y. Kim, J. K. Lee, and H. H. Hyun. 2005. Thymine production by Corynebacterium ammoniagenes mutants. J. Microbiol. Biotechnol. 15: 477- 483
  34. Tate, R., A. Riccio, E. Caputo, M. Iaccarino, and E. J. Patriarca. 1999. The Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris. Mol. Plant-Microbe Interact. 12: 24-34 https://doi.org/10.1094/MPMI.1999.12.1.24
  35. Thomas, D. and Y. Surdin-Kerjan. 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 61: 503-532
  36. von der Osten, C. H., C. Gioannetti, and A. J. Sinskey. 1989. Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 11: 11-16 https://doi.org/10.1007/BF01026778
  37. Wendisch, V. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 999- 1009
  38. Wyman, A., E. Shelton, and H. Paulus. 1975. Regulation of homoserine transacetylase in whole cells of Bacillus polymyxa. J. Biol. Chem. 250: 3904-3908