Functional Characterization of Antagonistic Fluorescent Pseudomonads Associated with Rhizospheric Soil of Rice (Oryza sativa L.)

  • Published : 2007.06.30

Abstract

Antagonistic fluorescent pseudomonads isolated from rhizospheric soil of rice were characterized by 16S rRNA amplicon and fatty acid methyl ester (FAME) analyses. Antagonistic isolates were grown in the fermentation media, and production of antibiotics was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Production of fungal cell-wall-degrading enzymes such as protease, cellulase, pectinase, and chitinase was determined. Dendrogram based on the major and differentiating fatty acids resulted into 5 clusters, viz., cluster I (P. pseudoalcaligenes group), cluster II (P. plecoglossicida group), cluster III (P. fluorescens group), cluster IV (P. aeruginosa group), and cluster V (P. putida group). Characteristic presence of high relative proportions of cyclopropane (17:0 CYCLO w7c) was observed in antagonistic bacteria. Data revealed biodiversity among antagonistic fluorescent pseudomonads associated with the rice rhizosphere. Results presented in this study will help to identify the antagonistic isolates and to determine their mechanisms that mediate antagonism against fungal pathogens of rice.

Keywords

References

  1. Ahn, T., J. Ka, G. Lee, and H. Song. 2007. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J. Microbiol. Biotechnol. 17: 52-57
  2. Ayyadurai, N., P. Ravindra Naik, M. Sreehari Rao, R. Sunish Kumar, S. K. Samrat, M. Manohar, and N. Sakthivel. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J. Appl. Microbiol. 100: 926- 937 https://doi.org/10.1111/j.1365-2672.2006.02863.x
  3. Bakker, W. A. and B. Schippers. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451-457 https://doi.org/10.1016/0038-0717(87)90037-X
  4. Cattelan, A. J., P. G. Hartel, and F. F. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680 https://doi.org/10.2136/sssaj1999.6361670x
  5. de Souza, J. T. and J. M. Raaijmakers. 2003. Polymorphisms within the PrnD and PltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43: 21-34
  6. Ellis, R. J., I. P. Thompson, and M. J. Bailey. 1999. Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microbiol. Ecol. 28: 345-356 https://doi.org/10.1111/j.1574-6941.1999.tb00589.x
  7. Ellis, R. J., T. M. Timms-Wilson, and M. J. Bailey. 2000. Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ. Microbiol. 2: 274-284 https://doi.org/10.1046/j.1462-2920.2000.00102.x
  8. Emmert, E. A. B. and J. Handelsman. 1999. Biocontrol of plant disease: A (Gram) positive perspective. FEMS Microbiol. Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  9. Higgins, D. G., A. T. Bleashy, and R. Fuchs. 1992. Clustal V: Improved software for multiple sequence alignment. Comput. Appl. Biosci. 8: 189-191
  10. Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
  11. Keel, C., U. Schnider, M. Maurhofer, C. Voisard, J. Laville, U. Burger, P. Wirthner, D. Haas, and G. Defago. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Inter. 5: 4- 13 https://doi.org/10.1094/MPMI-5-004
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  13. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
  14. Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  15. Mew, T. W. and A. M. Rosales. 1986. Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 76: 1260-1264 https://doi.org/10.1094/Phyto-76-1260
  16. O'Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676
  17. Ravindra Naik, P. and N. Sakthivel. 2006. Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Res. Microbiol. 157: 538-546 https://doi.org/10.1016/j.resmic.2005.11.009
  18. Renwick, A., R. Campbell, and S. Coe. 1991. Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathol. 40: 524-532 https://doi.org/10.1111/j.1365-3059.1991.tb02415.x
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  20. Sakthivel, N. and S. S. Gnanamanickam. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol. 53: 2056-2059
  21. Sakthivel, N. and S. S. Gnanamanickam. 1989. Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric. Ecosyst. Environ. 25: 287-298 https://doi.org/10.1016/0167-8809(89)90126-6
  22. Sands, D. C. and A. D. Rovira. 1971. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonads in south Australian soils and wheat rhizosphere. J. Appl. Bacteriol. 34: 261-275 https://doi.org/10.1111/j.1365-2672.1971.tb02285.x
  23. Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society of Microbiology, Washington, D.C
  24. Sunish Kumar, R., N. Ayyadurai, P. Pandiaraja, A. V. Reddy, Y. Venkateswarlu, O. Prakash, and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154 https://doi.org/10.1111/j.1365-2672.2004.02435.x
  25. Thomashow, L. S., D. M. Weller, R. F. Bonsall, and L. S. Pierson. 1990. Production of the antibiotic phenazine-1- carboxylic acid of fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908- 912
  26. Vancanneyt, M., S. Witt, W. R. Abraham, K. Kersters, and H. L. Fredrickson. 1996. Fatty acid content in whole-cell hydrolysates and phospholipids fractions of pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 19: 528- 540 https://doi.org/10.1016/S0723-2020(96)80025-7
  27. Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483 https://doi.org/10.1146/annurev.phyto.36.1.453
  28. Wang, A. Y. and J. J. E. Cronan. 1994. The growth phasedependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an rpoS (KatF)-dependent promoter plus enzyme instability. Mol. Microbiol. 11: 1009-1017 https://doi.org/10.1111/j.1365-2958.1994.tb00379.x
  29. Weisburg, W. G., S. M. Barns, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991