DOI QR코드

DOI QR Code

케블라 직물과 전단농화유체로 함침된 케블라 액체 방탄재의 파단모드 연구

A Study on the Failure Modes of Neat Kevlar Fabric and Kevlar Liquid Armor Impregnated with Shear Thickening Fluid

  • 윤병일 (국방과학연구소 기술연구본부) ;
  • 송흥섭 (국방과학연구소 기술연구본부) ;
  • 백종규 (국방과학연구소 기술연구본부)
  • 발행 : 2007.06.30

초록

본 연구는 순수 Kevlar 직물과 실리카 입자를 포함하는 전단농화유체가 함유된 Kevlar 액체방탄재(STF-Kevlar)에 대한 방탄충격에 의한 파단모드 연구이다. Cal.22 파편탄과 9mm FMJ 볼탄에 의한 방탄시험에 의하여 이 두 재료는 거시적 측면에서 다른 파단모드를 보여주었다. 순수 Kevlar 직물에서는 얀의 뽑힘(Pull-out)이, 그리고 STF-Kevlar 액체방탄재에서는 얀의 파단이 충격에너지를 흡수하는 주 기구로 나타났다. 전자주사현미경에 의한 미시적 관찰에서 Kevlar 섬유 표면의 벗겨짐, 섬유가 여러 가닥으로 갈라지는 스프리트, 그리고 섬유의 절단, 이 세가지 파단 모드가 손상 정도의 차이는 있지만 공통적으로 두 재료에서 관찰되었다. STF-Kevlar에서, 얀 섬유의 파단은 첫째는 실리카 입자로 덮여있는 얀-얀, 직물-직물 사이의 마찰력과, 둘째는 충격시 전단농화 현상의 발생으로 얀의 이동이 강력하게 억제되기 때문인 것으로 보인다.

In this study, the failure modes by ballistic impacts were studied both for a neat Kevlar woven fabric and a Kevlar liquid armor impregnated with shear thickening fluid (STF) containing silica particles. These two materials showed quite different failure modes macroscopically in ballistic impacts tests used by Cal.22 FSP and 9mm FMJ bullet. Yarn pull-out for the neat Kevlar woven fabric and yarn fracture occurred partially through all plies from 1st ply to last one for the STF-Kevlar are an important energy absorption mechanisms. The results observed by S.E.M showed commonly fiber damage which are torn skin in the longitudinal fiber direction, fiber split axially and fiber fracture for two materials. The reasons why STF-kevlar liquid armor material exhibits excellent ballistic performance are as follow: firstly the increased friction forces between yarn-yarn and fabric-fabric covered with silica particles and secondary the evolution of shear thickening phenomenmon resulting in suppression of yarn mobility.

키워드

참고문헌

  1. Ray C. Laible, Ballistic Materials and Penetratio Mechanics, Elsevier Amsterdam, 1980
  2. M.J.N Jacobs and J.L.J. Van Dingenen, 'Ballistic Protection Mechanics in Personal Armor,' J. of Materials Sci., Vol. 36, 2001, pp. 3137-3142 https://doi.org/10.1023/A:1017922000090
  3. D. Roylance, 'Ballistic of Transversely Impacted Fibers,' Text. Res. J., Vol. 10, 1977, pp. 679-684
  4. D. Roylance, 'Stress Wave Propagation in Fibers: Effect of Crossover,' Fiber Sci. Technology, Vol. 13, 1980, pp. 385-395 https://doi.org/10.1016/0015-0568(80)90011-1
  5. R.C. Laible and Figucia, 'The Application of High Modulus Fibers to Ballistic Protection,' J. Macromol Sci. Chem A, Vol. 7, No. 1, 1973, pp. 295-322 https://doi.org/10.1080/00222337308061142
  6. P.M. Cunniff, 'An Analysis of the System Effects in Woven Fabrics under Ballistic Impact,' Text. Res. J., Vol. 62, No.9, 1992, pp. 495-509 https://doi.org/10.1177/004051759206200902
  7. B.J. Briscoe and F. Motamedi, 'The Ballistic Impact Characteristics of Aamid Fabrics: The Influence of Interface Friction,' Wear, Vol. 158, 1992, pp. 229-247 https://doi.org/10.1016/0043-1648(92)90041-6
  8. M.A. Martinez, C. Navarro, R. Cortes, and J. Rodriguez, 'Friction and Wear Behavior of Kevlar Fabrics,' J. of Mater. Sci., Vol. 28, 1993, pp. 1305-1311 https://doi.org/10.1007/BF01191969
  9. S. Bathenov, 'Dissipation of Energy by Bulletproof Araamid Fabrics,' J. Mater. Sci., Vol. 32, 1997, pp. 4167-4173 https://doi.org/10.1023/A:1018674528993
  10. Y.S. LEE, E.D. Wetzel, N.J. Wagner, 'The Ballistic Impact Characteristics of Kevlar Woven Fabric Impregnated with a Colloidal Shear Thickening Fluid,' J. of Mater. Sci., Vol. 38, 2003, pp. 2825-2833 https://doi.org/10.1023/A:1024424200221
  11. R.L. Hoffman, 'Discontinuous and Dilatant Viscosity Behavior in Concentrated Suspensions. I. Observation of a Flow Instability,' J. Reol.. Vol. 40, 1996, pp. 531-548
  12. J.W. Bender and N.J. Wagner, J., Colloidal Interface Sci., Vol. 172, 1995, pp. 171 https://doi.org/10.1006/jcis.1995.1240
  13. E.A. Collins, D.J. Hoffman and P.L. Soni, J. Colloidal Interface Sci., Vol. 71, 1995, pp. 21
  14. R.S. Raghavan and S.A. Khan, 'Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillation Shear,' J. Colloid and Interface Sci., Vol. 185, 1977, pp. 57-67 https://doi.org/10.1006/jcis.1996.4581
  15. A. Zupancic, R. Lapasin and M. Zumer, 'Rheological Characterization of Shear Thickening$ TiO_2 $ Suspensions in Low Molecular Polymer Solution,' Progress in Organic Coating, Vol. 30, 1997, pp. 67-78 https://doi.org/10.1016/S0300-9440(96)00670-4
  16. B.J. maranzano and N.J. Wagner, 'The Eeffects of Particle Size on Reversible Shear Thickening of Concentrated Colloidal Dispersions,' J. Chemical Physics, Vol. 114, No. 23, 2001, pp. 10514-10527 https://doi.org/10.1063/1.1373687
  17. J.E. Kirwood, E.M. Kirwood, Y.S. Lee, R.G. Egres Jr, and N.J. Wagner, 'Yarn pull-out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric,' Part I. Quasi-static Characterization of Yarn Pull-out, Text. Res. J., Vol. 74, No. 11, 2004, pp. 939-948 https://doi.org/10.1177/004051750407401101
  18. J.E. Kirwood, E.M. Kirwood, Y.S. Lee, R.G. Egres Jr, and N.J. Wagner, 'Yarn pull-out as a Mechanism for Dissipating Ballistic Impact Energy in Kevlar KM-2 Fabric, Part II. Predicting Ballistic Performance,' Text. Res. J., Vol. 74, No. 11 2004, pp. 938-948
  19. V.B.C. Tan, T.E. Tay and W.K. Teo, 'Strengthening Fabric Armor with Silica Colloidal Suspensions,' Inter. J. of Solid and Structures, Vol. 42, 2005, pp. 1561-1576 https://doi.org/10.1016/j.ijsolstr.2004.08.013
  20. Stuart M. Lee, International Encyclopedia of Composites, VCH N.Y, 1990, pp. 37-48