DOI QR코드

DOI QR Code

Dependence of Gas Pressure on Cr Oxide Thin Film Growth Using a Plasma Focus Device

플라즈마 포커스를 이용한 크롬 산화물 박막 성장의 분위기 기체 압력 의존성 연구

  • Jung, Kyoo-Ho (Thin Film Materials Research Center, KIST) ;
  • Lee, Jae-Kap (Thin Film Materials Research Center, KIST) ;
  • Im, Hyun-Sik (The Department of Semiconductor Science, Dongguk University) ;
  • Karpinski, L. (Institute of Plasma Physics and Laser Microfusion (IPPLM)) ;
  • Scholz, M. (Institute of Plasma Physics and Laser Microfusion (IPPLM)) ;
  • Lee, Jeon-Kook (Thin Film Materials Research Center, KIST)
  • 정규호 (한국과학기술연구원 박막재료연구센터) ;
  • 이재갑 (한국과학기술연구원 박막재료연구센터) ;
  • 임현식 (동국대학교 반도체 과학과) ;
  • ;
  • ;
  • 이전국 (한국과학기술연구원 박막재료연구센터)
  • Published : 2007.06.27

Abstract

Chromium oxide thin films have been deposited on silicon substrates using a tabletop 9kJ mathertyped plasma focus (PF) device. Before deposition, pinch behavior with gas pressure was observed. Strength of pinches was increased with increasing working pressure. Deposition was performed at room temperature as a function of working pressure between 50 and 1000 mTorr. Composition and surface morphology of the films were analyzed by Auger Electron Spectroscopy and Scanning Electron Microscope, respectively. Growth rates of the films were decreased with pressure. The oxide films were polycrystalline containing some impurities, Cu, Fe, C and revealed finer grain structure at lower pressure.

Keywords

References

  1. H. Kelly and A. Marquez, Plasma Phys. Control. Fusion, 38, 942 (1996) https://doi.org/10.1088/0741-3335/38/11/005
  2. J. Pouzo, H. Acuna, M. Milanese and R. Moroso, Eur. Phys. J. D 21, 97-100 (2002) https://doi.org/10.1140/epjd/e2002-00183-2
  3. S. P. Moo, C. K. Chakrabarty and S Lee, IEEE Trans. Plasma Sci., 19, 3 (1991) https://doi.org/10.1109/27.87231
  4. J. N. Feugeas, E. C. Lionch, C. O. de Gonzalez and G. Galambos, J Appl. Phys, 64 (5), 1(1988) https://doi.org/10.1063/1.341604
  5. M. Sadowski, J. Zebrowski, D. Rydygier and J. Kucinski, Plasma Phys. Control. Fusion, 30(6), 763-769 (1988) https://doi.org/10.1088/0741-3335/30/6/008
  6. J. W. Mather, Methods of Experimental Physics, 9B, H. R. Griem and R. H. Lovberg, 194-214, Academic, New York (1971)
  7. Leopoldo Soto, Patricio silva, Jose Moreno etc., Braz. J. Phys., 34(4B), 1814-1821 (2004) https://doi.org/10.1590/S0103-97332004000800054
  8. S. K. H. Auluck, IEEE Trans. Plasma Sci., 25(1), (1997) https://doi.org/10.1109/27.557483
  9. D. Wong, A. Patran, T. L. Tan, R. S. Rawat, and P. Lee, IEEE Trans. Plasma Sci., 32(6), 2227-2235(2004) https://doi.org/10.1109/TPS.2004.838596
  10. M. Rombeld et. Al., 12th IEEE Int. Conf. Pulsed power, 2, 1167-1170 (1999) https://doi.org/10.1109/PPC.1999.823729
  11. W. F. Ray and R. Hewson, Industry Applications Conference, Conference Record of the 2000 IEEE, 5, 3083 -3090 (2000) https://doi.org/10.1109/IAS.2000.882606
  12. Alan Y. Chow, Machelle T. Pardue, Vincent Y. Chow, Gholam A. Peyman,hanping Liang, Jay I. Perlman and Neal S. Peachey, IEEE Trans. Neural Syst. Rehabil. Eng., 9(1), (2001) https://doi.org/10.1109/7333.918281