초록
This study is aimed at the development of a runoff forecasting model by using the Fuzzy inference system and Neural Network model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting. The Neuro-Fuzzy (NF) model were used in this study. The NF model, recently received a great deal of attention, improve the existing Neural Networks by the aid of the Fuzzy theory applied to each node. The study area is the downstreams of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model respectively. The schematic diagram method and the statistical analysis are conducted to evaluate the feasibility of rainfall-runoff modeling. The model accuracy was rapidly decreased as the forecasting time became longer. The NF model can give accurate runoff forecasts up to 4 hours ahead in standard above the Determination coefficient $(R^2)$ 0.7. In the comparison of the runoff forecasting using the NF and TANK models, characteristics of peak runoff in the TANK model was higher than ones in the NF models, but peak values of hydrograph in the NF models were similar.