Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters

지진동모델 파라미터 동시역산을 이용한 지진관측소 분류

  • Yun, Kwan-Hee (Environmental & Structural Lab., Korea Electric Power Research Institute) ;
  • Suh, Jung-Hee (School of Civil, Urban & Geosystem Engineering, Seoul National University)
  • 연관희 (한전전력연구원 환경구조연구소) ;
  • 서정희 (서울대학교 지구환경시스템공학부)
  • Published : 2007.08.31

Abstract

The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

지진기록의 수평성분 S파 푸리에스펙트럼을 이용한 추계학적 지진동모델(stochastic point-source ground-motion model; Boore, 2003) 파라미터 역산결과를 기반으로 지진공학적으로 활용될 수 있는 지진관측소 분류를 시도하였다. 추계학적 지진동모델에서 부지효과는 고주파감쇠상수인 $K_0$ (Anderson and Hough, 1984)와 지층의 탄성임피던스의 차이에 의해 발생하는 부지증폭함수(A(f))의 조합으로 표현된다. 본 연구에서는 A(f)를 지진파 스펙트럼의 수평/수직성분비(H/V)와, 이를 초기값으로 하여 얻어진 역산결과에 의한 관측소별 로그오차평균을 합산하여 계산하였다. 지진관측소는 $1{\sim}10$ Hz 범위의 부지증폭함수의 상용로그 최대값($logA_{1-10}^{max}$(f))에 의해 다섯 등급(A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ log < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f))으로 분류하였다. 분류된 진관측소의 평균적인 부지증폭함수는 A에서 E 등급으로 변함에 따라 지반의 고유진동수가 저주파로 이동하는 의미 있는 결과를 나타내었으며, 최근에 설치장소를 이전한 기상청 일부 관측소에 대해 이설 전후의 등급변화 및 최근 발생한 중규모 지진관측자료와 지진동 거리감쇠식과의 비교분석을 통해 관측소 분류결과의 타당성을 입증할 수 있었다.

Keywords

References

  1. 건설교통부, 1997, 내진설계기준연구
  2. 기상청, 국가지진정보 시스템 홈페이지, 최근접근(2007. 7. 10), http://www.kmaneis.go.kr
  3. 김성균, 1995, 한반도의 지각구조에 관한 연구, 지질학회지, 31.4, 393-403
  4. 박동희, 연관희, 장천중, 2003, 지진관측 자료를 이용한 국내 지 진관측소의 지반특성 분류, 한국지진공학회 춘계학술발표회 논문집, 한국지진공학회, 81-89
  5. 선창국, 정충기, 김동수, 2007, 얕은 심도 전단파속도 분포를 이 용한 30m 심도 평균 전단파속도의 결정, 한국지진공학회지, 11.1, 45-57 https://doi.org/10.5000/EESK.2007.11.1.045
  6. 연관희, 2007, 한반도 남부지역에 대한 2차원 Q 토모그래피 역 산, 공학박사학위논문, 서울대학교
  7. 연관희, 박동희, 최원학, 장천중, 2005, 울진 앞바다 지진 ('04.5.29, $M_L$=5.2)의 추계학적 지진동 평가, 한국지진공학회 춘계학술발표회 논문집, 한국지진공학회, 18-25
  8. 연관희, 박동희, 장천중, 서정희, 2007, 오대산지진('07. 1. 20, $M_L$=4.8)에 대한 지진원 스펙트럼 추정, 춘계 지질과학기술 공 동학술대회, 88-91
  9. 임창복, 장천중, 김재관, 최인길, 2006, 원전부지 지진안전성 평 가기반 기술개발(원전부지 최대 지진력 평가 연구), 원자력안 전기술원/한전전력연구원
  10. Anderson, J. G., and Hough, S. E., 1984, A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies, Bulletin of Seismological Society of America, 74, 1969-1993
  11. Aki, K., 1967, Scaling law of seismic spectrum, Journal of Geophysical Research, 72, 1217-1231 https://doi.org/10.1029/JZ072i004p01217
  12. Boore, D. M., and Joyner, W. B., 1997, Site amplification for generic rock sites, Bulletin of Seismological Society of America, 87, 327-341
  13. Boore, D. M., 2003, Simulation of ground motion using the stochastic method, Pure and applied geophysics, 160, 635- 676 https://doi.org/10.1007/PL00012553
  14. Brune, J. N., 1970, Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, 75, 4997-5009 https://doi.org/10.1029/JB075i026p04997
  15. Brune, J. N., 1971, Correction, Journal of Geophysical Research, 76, 5002 https://doi.org/10.1029/JB076i020p05002
  16. Building Seismic Safety Council (BSSC), 1994, NEHRP recommended provisions for seismic regulations for new buildings, Part 1-Provisions, FEMA 222A, Federal Emergency Management Agency, 290
  17. Cornell, C. A., 1968, Engineering seismic risk analysis, Bulletin of the Seismological Society of America, 58, 1583-1606
  18. Marquardt, D. W., 1963, An algorithm for least-squares estimation of nonlinear parameters, Journal of the Society for Industrial and Applied Mathematics, 11, 431-441
  19. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR.RTR1, 30, 25-33