SOME RESULTS ON FUZZY COSETS AND HOMOMORPHISMS OF N-GROUPS

  • 발행 : 2007.06.30

초록

In this paper we consider the fuzzy ideals of N-group G where N is a nearring. We introduce fuzzy ideal ${\theta}_{\mu}$ of the quotient N-group $G/{\mu}$ with respect to a fuzzy ideal $\mu$ of G. If $\mu$ is a fuzzy ideal of G and $\theta$ a fuzzy ideal of $G/{\mu}$ such that ${\theta}_{\mu}\;{\subseteq}\;{\theta}$ and ${\theta}_{\mu}(0)\;=\;{\theta}(0)$, then corresponding ${\sigma}_{\theta}\;:\;G\;{\rightarrow}\;[0,\;1]$ is defined and proved that it is a fuzzy ideal of G such that ${\mu}\;{\subseteq}\;{\sigma}_{\theta}$ and ${\mu}(0)\;=\;{\sigma}_{\theta}(0)$. We also prove some results on homomorphisms and fuzzy ideals of N-groups. The image and preimage of fuzzy ideal $\mu$ under N-group homomorphism were studied. Finally it is obtained that if $f\;:\;G\;{\rightarrow}\;G^1$ is an epimorphism of N-groups, then there is an order preserving bijection between the fuzzy ideals of $G^1$ and the fuzzy ideals of G that are constant on kerf. Some examples related to these concepts were illustrated.

키워드