DOI QR코드

DOI QR Code

Design of LMS based adaptive equalizer using Discrete Multi-Wavelet Transform

Discrete Multi-Wavelet 변환을 이용한 LMS기반 적응 등화기 설계

  • 최윤석 (삼성전자 네트워크사업부) ;
  • 박형근 (한국기술교육대학교 정보기술공학부)
  • Published : 2007.03.31

Abstract

In the next generation mobile multimedia communications, the broad band shot-burst transmissions are used to reduce end-to-end transmission delay, and to limit the time variation of wireless channels over a burst. However, training overhead is very significant for such short burst formats. So, the availability of the short training sequence and the fast converging adaptive algorithm is essential in the system adopting the symbol-by-symbol adaptive equalizer. In this paper, we propose an adaptive equalizer using the DWMT (discrete multi-wavelet transform) and LMS (least mean square) adaptation. The proposed equalizer has a faster convergence rate than that of the existing transform-domain equalizers, while the increase of computational complexity is very small.

차세대 이동 멀티미디어 통신에서는 전송지연을 줄이고 버스트 시변채널의 시간변화를 제한하기 위해 버스트 전송이 많이 사용된다. 그러나 채널적응을 위한 훈련 심볼은 짧은 길이의 버스트 데이터에 대해 심각한 문제를 야기할 수 있다. 따라서 심볼에 대한 적응 등화기의 설계에 있어서 짧은 길이의 훈련 심볼과 빠른 수렴을 갖는 적응 알고리즘이 필요로 된다. 본 논문에서는 DMWT (discrete multi-wavelet transform)과 LMS(least mean square) adaptation 을 갖는 적응 등화기를 제안한다. 제안된 등화기는 복잡성의 증가를 최소화하면서도 현재의 transform-domain equalizer보다 빠른 수렴을 갖는다.

Keywords

References

  1. J. G. Proakis, Digital Communication, 3rd edition, MC Graw Hill, 1995
  2. E. A. Lee, and D. G. Messersclunitt, Digital Communication, 2nd edition, Kluwer Academic, 1994
  3. F. Beaufays, 'Transform-Domain Adaptive Filters: An Analytical Approach,' IEEE Trans. Signal Processing, Vol. 43, No.2, pp. 422-431, Feb, 1995 https://doi.org/10.1109/78.348125
  4. N. J. Bershad and P. L. Feintuch, 'A Normalized Frequency Domain LMS Adaptive Algorithm,' IEEE Trans. Acoust. Speech, Signal Processing, Vol. ASSP-34, No.3, pp. 452-461, June 1986
  5. Samir Attallah, 'The Wavelet Transform-Domain LMS Algorithm: A More Practical Approach,' IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 47, No.3, March 2000
  6. L. Feng and W. Xinmei, 'Wavelet based decision feedback equalizer,' IEE Electronics Letters, Vol. 33, No, 7, pp. 565-567, March 1997 https://doi.org/10.1049/el:19970378
  7. V. N. Parikh, and A. Z. Baraniecki, 'The Use of the Modified Escalator Algorithm to Improve the Performance of Transform-domain LMS Adaptive Filters,' IEEE Tr. Signal Processing., Vol. 46, No. 2, pp. 625-635, 1998 https://doi.org/10.1109/78.661330
  8. V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, 'The Application of Multiwavelet Filterbanks to Image Processing,' IEEE Transactions on Image Processing, Vol. 8, No.4, pp. 548-563, April 1999 https://doi.org/10.1109/83.753742
  9. T. D. Bui and G. Chen, 'Translate-Invariant Denoising Using Multiwavelets,' IEEE Trans. Signal Processing, Vol. 46, No. 12, pp. 3414-3420, Dec. 1998 https://doi.org/10.1109/78.735315
  10. X. G. Xia, 'A New Prefilter Design for Discrete Multiwavelet Transforms,' IEEE Trans. Signal Processing, Vol. 46, No.6, pp. 1558-1570, June 1998 https://doi.org/10.1109/78.678469
  11. Y. Xinxing, J. Licheng, and Z. Jiankang, 'Design of orthogonal prefilter with the Strang-Fix condition,' IEE Electronics Letters, Vol. 35, No.2, pp. 117-119, Jan. 1999
  12. J. S. Geronimo, D. P. Hardin, and P. R. Massopust, 'Fractal functions and wavelet expansions based on several scaling functions,' J. Approx. Theory, Vol. 78, pp. 373-401, 1994 https://doi.org/10.1006/jath.1994.1085