DOI QR코드

DOI QR Code

Parametric density concept for long-range pipeline health monitoring

  • Na, Won-Bae (Department of Ocean Engineering, Pukyong National University) ;
  • Yoon, Han-Sam (Research Center for Ocean Industrial Development, Pukyong National University)
  • Received : 2006.10.30
  • Accepted : 2007.01.09
  • Published : 2007.07.25

Abstract

Parametric density concept is proposed for a long-range pipeline health monitoring. This concept is designed to obtain the attenuation of ultrasonic guided waves propagating in underwater pipelines without complicated calculation of attenuation dispersion curves. For the study, three different pipe materials such as aluminum, cast iron, and steel are considered, ten different transporting fluids are assumed, and four different geometric pipe dimensions are adopted. It is shown that the attenuation values based on the parametric density concept reasonably match with the attenuation values obtained from dispersion curves; hence, its efficiency is proved. With this concept, field engineers or inspectors associated with long-range pipeline health monitoring would take the advantage of easier capturing wave attenuation value, which is a critical variable to decide sensor location or sensors interval.

Keywords

References

  1. Achenbach, J. D. (1984), Wave Propagation in Elastic Solids, North-Holland.
  2. Alleyne, D. N. and Cawley, P. (1996), "The excitation of lamb waves in pipes using dry-coupled piezoelectric transducers", J. Nondestruct. Eval., 15, 11-20. https://doi.org/10.1007/BF00733822
  3. Aristégui, C., Lowe, M. J. S., and Cawley, P. (2001), "Guided waves in fluid-filled pipes surrounded by different fluids", Ultrasonics, 39, 367-375. https://doi.org/10.1016/S0041-624X(01)00064-6
  4. Balageas, D. (2006), "Introduction to structural health monitoring", Eds. Balageas, D., Fritzen, C. P., and Guemes, A., Struct. Health Monit., 13-43, ISTE.
  5. Gazis, D. C. (1959a), "Three dimensional investigation of the propagation of waves in hollow circular cylinders ii. numerical results", J. Acoust. Soc. Am., 31, 573-578. https://doi.org/10.1121/1.1907754
  6. Gazis, D. C. (1959b), "Three dimensional investigation of the oropagation of waves in hollow circular cylinders", J. Acoust. Soc. Am., 31, 568-572. https://doi.org/10.1121/1.1907753
  7. Guo, D., and Kundu, T. (2001), "A new transducer holder mechanism for pipe inspection", J. Acoust. Soc. Am., 110, 303-309. https://doi.org/10.1121/1.1377289
  8. Knopoff, L. (1964), "A matrix method for elastic wave problems", Bulletin Seismol. Soc. Am., 54, 431-438.
  9. Kolsky, H. (1963), Stress Waves in Solids, Dover.
  10. Kumar, R. (1971), "Flexural vibrations of fluid-filled circular cylindrical shells", Acustica, 24, 137-146.
  11. Kwun, H. and Crouch, A. (2006), "Guided wave fills inspection gap", Pipeline and Gas Technology, August, 28-31.
  12. Kwun, H., Bartels, K. A., and Dynes, C. (1999), "Dispersion of longitudinal waves propagating in liquid-filled cylindrical shells", J. Acoust. Soc. Am., 105, 2601-2611. https://doi.org/10.1121/1.426876
  13. Kwun, H., Kim, S. Y., Choi, M. S., and Walker, S. M. (2004), "Torsional guided-wave attenuation in coal-tarenamel-coated, buried piping", NDT&E Int., 37, 663-665. https://doi.org/10.1016/j.ndteint.2004.05.003
  14. Lowe, M. (1995), "Matrix techniques for modeling ultrasonic waves in multilayered media", IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 42, 525-542. https://doi.org/10.1109/58.393096
  15. Mal, A. (1988), "Wave propagation in layered composite laminates under periodic surface loads", Wave Motion, 10, 257-266. https://doi.org/10.1016/0165-2125(88)90022-4
  16. Meeker, T. R. and Meitzler, A. H. (1972), "Guided wave propagation in elongated cylinder and plates", Eds. Mason, W. P. and Thurston, R. N., Physical Acoustic Principles and Methods, 1A, 111-167, New York, Academic Press.
  17. Na, W. B. and Kundu, T. (2002), "Wave attenuation in pipes and its application in determining axial spacing of monitoring sensors", Mater. Eval., 60, 635-644.
  18. Na, W. B., Ryu, Y. S., and Kim, J. T. (2005), "Attenuation of fundamental longitudinal cylindrical guided wave propagating in liquid-filled steel pipes", J. Ocean Eng. Tech., 19, 26-33.
  19. Na, W. B., Kim, J. T., Yoon, H. S., and Hong, D. S. (2006), "Pipeline sensor location determination based on guided wave propagation", Proceedings of the Seventh ISOPE Pacific/Asia Offshore Mechanics Symposium, Dalian, China, Sep. 335-340.
  20. Nagy, P. B. (1995), "Longitudinal guided wave propagation in a transversely isotropic rod immersed in fluid", J. Acoust. Soc. Am., 98, 454-457. https://doi.org/10.1121/1.413702
  21. Onoe, M., McNiven, H. D., and Mindlin, R. D. (1962), "Dispersion of axially symmetric waves in elastic solids", J. Appl. Mech., 29, 729-734. https://doi.org/10.1115/1.3640661
  22. Pan, E., Rogers, J., Datta, S. K., and Shah, A. H. (1999), "Mode selection of guided waves for ultrasonic inspection of gas pipelines with thick coating", Mech. Mater., 31, 165-174. https://doi.org/10.1016/S0167-6636(98)00057-X
  23. Pavlakovic, B. and Lowe, M. (2001), DISPERSE: User's Manual, Imperial College, University of London, Non-Destructive Testing Laboratory.
  24. Pavlakovic, B. N., Lowe, M. J. S., Alleyne, D. N., and Cawley, P. (1997), "Disperse: a general purpose program for creating dispersion curves", Eds. D.O. Thompson and D.E. Chimenti, Review of Progress in Quantitative Nondestructive Evaluation, 18, 239-246, Plenum Press, New York.
  25. Randall, M. J. (1967), "Fast programs for half-space problems", Bullet. Seismol. Soc. Am., 57, 1299-1315.
  26. Rose, J. L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press.
  27. Rose, J. L., Ditri, J. J., Pilarski, A., Rajana, K., and Carr, F. (1994), "A guided waves inspection technique for nuclear steam generator tubing", NDT&E Int., 27, 307-310. https://doi.org/10.1016/0963-8695(94)90211-9
  28. Schmidt, H. and Jensen, F. B. (1985), "A full wave solution for propagation in multilayered viscoelastic media with application to gaussian beam reflection at liquid-solid interfaces", J. Acoust. Soc. Am., 77, 813-825. https://doi.org/10.1121/1.392050
  29. Scott, S. L. and Barrufet, M. A. (2003), Worldwide Assessment of Industry Leak Detection Capabilities for Single and Multiphase Pipelines, Offshore Technology Research Center.
  30. Wilcox, P., Lowe, M., and Cawley, P. (2001), "The effect of dispersion on long-range inspection using ultrasonic guided waves", NDT&E Int., 34, 1-9. https://doi.org/10.1016/S0963-8695(00)00024-4

Cited by

  1. Application of numerical simulation of submersed rock-berm structure under anchor collision for structural health monitoring of submarine power cables vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.299