References
- American Concrete Institute (2002), ACI Building Code Requirements for Reinforced Concrete, ACI 318-02.
- Ashour, A. F., Alvarez, L. F. and Toropov, V. V. (2003), "Emprical modeling of shear strength of RC deep beams by genetic programming", Comput. Struct., 81, 331-38. https://doi.org/10.1016/S0045-7949(02)00437-6
- Bhatt, P. and Kader, M. A. (1998), "Prediction of shear strength of reinforced concrete beams by nonlinear finite element analysis", Comput. Struct., 68, 139-55. https://doi.org/10.1016/S0045-7949(98)00034-0
- Cladera, A. and Mari, A. R. (2004), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks, Part I: beams without stirrups", Eng. Struct., 26, 917-26. https://doi.org/10.1016/j.engstruct.2004.02.010
- Coello, C., Hernandez, F. S., Farrera, F. A. (1997), "Optimal design of reinforced concrete beams using genetic algorithms", Expert Systems with Applications, 12(1), 101-08. https://doi.org/10.1016/S0957-4174(96)00084-X
- Collins, M. P. and Kuchma, D. (1999), "How safe are our large, lightly reinforced concrete beams, slabs and footings", ACI Struct. J., 96(4), 482-90.
- CSA Committee A23.3, Design of Concrete Structures: Structures (Design)-A National Standard of Canada, CanadianStandards Association, Rexdale, Ontario, Canada, 1994.
- El Chabib, H., Nehdi, M. and Said, A. (2005), "Predicting shear capacity of NSC and HSC slender beams using artificial intelligence", Comput. Concrete 16(1), 12.
- European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General rules and rules for buildings. Final Draft, July 2002, p. 226.
- Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, John Wiley, 411 p.
- Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc, 412 p.
- Kani, G. N. J. (1967), "How safe are our large reinforced concrete beams?", ACI J. Proceedings, 64(3), 128-41.
- Kim, J. K. and Park, Y. D. (1996), "Prediction of shear strength of reinforced concrete beams without web reinforcement", ACI Mater. J., 93(3), 213-22.
- Koumousis, V. K., Arsenis, S. J. (1998), "Genetic algorithms in optimal detailed design of reinforced concrete members", Comput. Aided Civ. Infrastruct. Eng., 13, 43-52. https://doi.org/10.1111/0885-9507.00084
- Lim, C. H. and Yoon, Y. S. (2004), "Genetic algorithm in mix proportioning of high-performance concrete", Cement Concrete Res., 34(3), 409-20. https://doi.org/10.1016/j.cemconres.2003.08.018
- Mansour, M. Y., Dicleli, M., Lee, J. Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concretebeams using artificial neural networks", Eng. Struct., 26, 781-99. https://doi.org/10.1016/j.engstruct.2004.01.011
- Michalewicz, Z. (1992), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, 387 p.
- Oreta, A. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26, 681-91. https://doi.org/10.1016/j.engstruct.2004.01.009
- Rebeiz, K. (1999), "Shear strength prediction for concrete members", J. Struct. Eng., ASCE 125(3), 301-08. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(301)
- Rebeiz, K. (2001), "Effect of variables on shear strength of concrete beams", J. Mater. Civ. Eng., ASCE, 13(6), 467-70. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(467)
- Salandra, M. and Ahmad, S. (1989), "Shear capacity of reinforced lightweight high-strength concrete beams", ACI Struct. J., 86(6), 697-704.
- Taylor, H. P. J. (1970), "Investigation of the forces carried across cracks in reinforced concrete beams in shear by interlock of aggregate", Technical Report No. 42.447, Cement and Concrete Association, London, 22 p.
- Wang, Q. J. (1997), "Using genetic algorithms to optimise model parameters", Environmental Modelling & Software, 12(1), 27-34. https://doi.org/10.1016/S1364-8152(96)00030-8
- Zararis, P. and Papadakis, G. (2001), "Diagonal shear failure and size effect in RC beams without web reinforcement", J. Struct. Eng., ASCE, 127(7), 733-41. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
Cited by
- A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure vol.149, 2017, https://doi.org/10.1016/j.conbuildmat.2017.05.165
- Static vulnerability of existing R.C. buildings in Italy: a case study vol.39, pp.4, 2007, https://doi.org/10.12989/sem.2011.39.4.599