References
- Andersen, J. and Nerenst, P. (1952), "Wave velocity in concrete", J. ACI, 48(8), 613-636.
- ASTM C 597-97 (1998), Standard Test Method for Pulse Velocity through Concrete, Annual Book of ASTM Standards, Easton, MD, USA.
- ASTM C 39-96 (1998), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, Easton, MD, USA.
- Chung, H. W. and Law, K. S. (1983), "Diagnosing in situ concrete by ultrasonic pulse technique", Concrete Int., 13(10), 42-49.
- Dayhoff, J. (1990), Neural Networks Architecture, New York: Van Nostrand Reinhold.
- Demirboga, R., Turkmen I. and Karakoc M. B. (2004), "Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete", Cement Concrete Res., 34(12), 2329?2336. https://doi.org/10.1016/j.cemconres.2004.04.017
- Fausset, L. (1994), Fundamental of Neural Networks, Prentice-Hall, Englewood Cliffs, N.J., 1994.
- Galan, A. (1967), "Estimate of concrete strength by ultrasonic pulses velocity and damping constant", ACI J. 64(10), 678-684.
- Ghaboussi, J., Garrett, J. H. and Wu, X. (1991), "Knowledge-based modeling of material behavior with neural networks", J. Eng. Mech., ASCE, 117(1), 129-134.
- Hossain, K. M. A., Lachemi, M. and Easa, S. M. (2006), "Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action", Comput. Concrete, 3(6), 439-454. https://doi.org/10.12989/cac.2006.3.6.439
- Jones, R. and Gatfield, E. N. (1955), "Testing concrete by an ultrasonic pulse technique", DSIR Road Research, Tech. Paper No. 34, London, H.M.S.O.
- Kewalramani, M. A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Automation in Construction, 32, 374-379.
- Kheder, G. (1998), "Assessment of in situ concrete strength using combined nondestructive testing", Proceedings of the First international Arab Conference on Maintenance and Rehabilitation of Concrete Structures, Cairo, 59-75.
- Liang, M. T. and Wu, J. (2002), "Theoretical elucidation on the empirical formulae for the ultrasonic testing method for concrete structures", Cement Concrete Res., 32(11), 1763-1769. https://doi.org/10.1016/S0008-8846(02)00866-9
- Lin. Y., Lai, C. P. and Yen, T. (2003), "Prediction of ultrasonic pulse velocity (UPV) in concrete", ACI Mater. J., 100(1), 21-28.
- Phoon, K. K., Wee, T. H. and Loi, C. S. (1999), "Development of statistical quality assurance criterion for concrete using ultrasonic pulse velocity method", ACI Mater. J., 96(5), 568-573.
- Popovics, S., Rose, J. L., John, S. and Popovics, J. S. (1990), "The behavior of ultrasonic pulses in concrete", Cement Concrete Res., 20(2), 259-270. https://doi.org/10.1016/0008-8846(90)90079-D
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), "Learning internal representation by error propagation", Parallel Distributed Processing, 1, 318-362.
- Shikh, M. E. (1998), "Very high strength of special concrete evaluated by pulse velocity", Proceedings of the 1st international Arab Conference on Maintenance and Rehabilitation of Concrete Structures, Cairo, 79-105.
- Sturrup, V. R., Vecchio, F. J., and Caratin, H. (1984), "Pulse velocity as a measure of concrete compressive strength. In situ/nondestructive testing of concrete", ACI SP-82, 01-227.
- Tang, C. W., Chen, H. J., and Yen, T. (2003), "Modeling the confinement efficiency of reinforced concrete columns with rectilinear transverse steel using artificial neural networks", J. Struct. Eng., ASCE, June, 129(6), 775-783. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(775)
- Tang, C. W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. https://doi.org/10.12989/cac.2006.3.5.335
- Yeh, I. C. (1999), "Design of high-performance concrete mixture using neural networks and nonlinear programming", J. Comput. in Civil Eng., ASCE, 13(1), 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
- Yun, C., Choi, K., Kim, S., and Song, Y. (1988), "Comparative evaluation of nondestructive test methods for inplace strength determination", Nondestructive Testing, ACI SP-112, 111-136.
- Zurada, L. (1992), Introduction to Artificial Neural Systems, West Publ. Co., USA.
- Zhao, Z. and Ren, L. (2002), "Failure criterion of concrete under triaxial stresses using neural networks", Computer-Aided Civ. Infrast. Eng., 17(1), 68-73. https://doi.org/10.1111/1467-8667.00254
Cited by
- MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing vol.87, pp.21-22, 2009, https://doi.org/10.1016/j.compstruc.2009.08.010
- Efficient single-step time-dependent analysis of PC structures vol.165, pp.2, 2012, https://doi.org/10.1680/eacm.10.00030
- Comparison of modelling using regression techniques and an artificial neural network for obtaining the static modulus of elasticity of Pinus radiata D. Don. timber by ultrasound vol.96, 2016, https://doi.org/10.1016/j.compositesb.2016.04.036
- Comparison of ANN and RKS approaches to model SCC strength vol.310, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/310/1/012037
- Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0246-7
- Modeling the effects of additives on rheological properties of fresh self-consolidating cement paste using artificial neural network vol.8, pp.3, 2007, https://doi.org/10.12989/cac.2011.8.3.279
- Artificial neural network calculations for a receding contact problem vol.25, pp.6, 2007, https://doi.org/10.12989/cac.2020.25.6.551