DOI QR코드

DOI QR Code

3D material model for nonlinear basic creep of concrete

  • 투고 : 2005.09.01
  • 심사 : 2007.02.05
  • 발행 : 2007.04.25

초록

A new model predicting the nonlinear basic creep behaviour of concrete structures subjected to high multi-axial stresses is proposed. It combines a model based on the thermodynamic framework of the elasto-plastic continuum damage theory for time-independent material behaviour and a rheological model describing phenomenologically the long-term delayed deformation. Strength increase due to ageing is regarded. The general 3D solution for the creep theory is derived from a rate-type form of the uniaxial formulation by the assumption of associated creep flow and a theorem of energy equivalence. The model is able to reproduce linear primary creep as well as secondary and tertiary creep stages under high compressive stresses. For concrete in tension a simple viscoelastic formulation is applied. The material law is then incorporated into a finite element solution procedure for analysis of reinforced concrete structures. Numerical examples of uniaxial creep tests and concrete members show excellent agreement with experimental results.

키워드

참고문헌

  1. Bazant, Z. P. and Chern, J. C. (1984), "Rate-type concrete creep law with reduced time", J. Eng. Mech., 110, 329-340. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(329)
  2. Bazant, Z. P., Hauggaard, A. B., Baweja, S. and Ulm, F. J. (1997), "Microprestress-solidification theory for concrete creep. I: Aging and drying effects. II: Algorithm and verification", J. Eng. Mech., 123(11), 1188-1201. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:11(1188)
  3. Bazant, Z. P. and Najjar, L. J. (1971), "Drying of concrete as a nonlinear diffusion problem", Cement Concrete Res., 1, 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
  4. Bazant, Z. P. and Oh, B. (1983), "Crack band theory for fracture concrete". J. Eng. Mech., 16(93), 155-177.
  5. Bazant, Z. P. and Prasannan, S. (1989), "Solidification theory for concrete creep. I: Formulation. II: Verification and application", J. Eng. Mech., 115, 1691-1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)
  6. Bazant, Z. P. and Wu, S. T. (1974), "Rate-type creep law of ageing concrete based on maxwell chain", Mater. Struct., 7, 45-60.
  7. Bockhold, J., Kratzig, W. B., Pölling, R. and Petryna, Y. S. (2003), "Material model for concrete under monotonic loading and creep", In N. Bicanic, R. de Borst, H. Mang, and G. Meschke (Eds.), Computational Modelling of Concrete Structures, 401-410. Balkema.
  8. CEB/FIP (1991), CEB-FIP Model Code 1990 (Design Code).
  9. Cervera, M., Oliver, J. and Prato, T. (1999), "Thermo-chemo-mechanical model for concrete. I: Hydration and aging. II: Damage and creep. J. Eng. Mech. 125(9), 1018-1039.
  10. de Borst, R. and Gutierrez, M. A. (1999), "A unified framework for concrete damage and fracture models including size effects", Int. J. Fracture, 95, 261-277. https://doi.org/10.1023/A:1018664705895
  11. de Schutter, G. and Taerwe, L. (1996), "Degree of hydration-based description of mechanical roperties of early age concrete", Mater. Struct., 29, 335-344. https://doi.org/10.1007/BF02486341
  12. Espion, B. (1993), "Benchmark examples for creep and shrinkage analysis computer programs", In Z.P. Bazant and I. Carol (Eds.), Creep and Shrinkage of Concrete, 877-888. E & FN Spon, London.
  13. Govindjee, S., Kay, G. J. and Simo, J. C. (1995), "Anisotropic modelling and numerical simulation of brittle damage in concrete", Int. J. Numer. Methods Eng., 38, 3611-3633. https://doi.org/10.1002/nme.1620382105
  14. Hofstetter, G. and Mang, H. A. (1995), Computational mechanics of reinforced concrete structures. Grundlagen und Fortschritte der Ingenieurwissenschaften. Braunschweig: Vieweg & Sohn.
  15. Karihaloo, B. L. and Santhikumar, S. (1998), "Time-dependent behaviour of cracked and ageing concrete", Proceeding of EURO-C 1998 (139-166).
  16. Kratzig, W. B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82, 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002
  17. Kratzig, W. B. and Jun, D. (2003), "On 'best' shell models - From classical shells, degenerated and multi-layer concepts to 3D", Archive of Applied Mechanics, 73, 1-25. https://doi.org/10.1007/s00419-002-0271-4
  18. Mazzotti, C. and Savoia, M. (2002), "Nonlinear creep, possion's ratio and creep-damage interaction of concrete in compression", ACI Mater. J., 99(5), 450-457.
  19. Mazzotti, C. and Savoia, M. (2003), "Nonlinear creep damage model for concrete under uniaxial compression", J. Eng. Mech., 129(9), 1065-1075. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:9(1065)
  20. Meschke, G. (1998), "Consideration of aging of shotcrete in the context of a 3D viscoplastic material model", Int. J. Numer. Methods Eng., 39, 3123-3143.
  21. Meschke, G., Lackner, R. and Mang, H. A. (1998), "An anisotropic elastoplastic-damage model for plain concrete", Int. J. Numer. Methods Eng., 42, 703-727. https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4<703::AID-NME384>3.0.CO;2-B
  22. Meyers, B. L., Slate, F. O. and Winter, G. (1969), "Relationship between time-dependent deformation and microcracking of plane concrete", ACI J., 66, 60-69.
  23. Nechvatal, D. (1996), Normalbeton unter hohen Dauerlasten bei verhindertem Feuchteaustausch. Ph. D. thesis, Lehrstuhl für Massivbau, Technische Universitat Munchen. In German.
  24. Newmark, N. M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div. (ASCE), 3, 67-94.
  25. Ortiz, M. and Martin, J. B. (1989), "Symmetry-preserving return mapping algorithms and incrementally extremal paths: A unification of concepts", Int. J. Numer. Methods Eng., 28, 1839-1853. https://doi.org/10.1002/nme.1620280810
  26. Ozbolt, J. and Reinhardt, H. W. (2001), "Creep-cracking interaction of concrete-threedimensional finite element model", In F.-J. Ulm, Z. P. Ba ant, and F.H. Wittmann (Eds.), Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials, 221-228. Elsevier Science Ltd.
  27. Petryna, Y. S. and Kratzig, W. B. (2005), "Computational framework for long-term reliability analyis of RC structures", Comp. Methods Appl. Mech. Eng., 194, 1619-1639. https://doi.org/10.1016/j.cma.2004.09.002
  28. Pfister, T. and Stangenberg, F. (2005), "Fatigue lifetime assessment of RC members", In G. Augusti, G. I. Schueller, and M. Ciampoli (Eds.), Safety and Reliability of Engineering Systems and Structures, Rome, Italy, 19-23 June 2005, CD-ROM. ICOSSAR '05: Mill-press.
  29. Roll, R. (1964), "Long time creep-recovery of highly stressed concrete cylinders", In ACI SP-9 Symposium on creep, 115-128. Portland Cement Association.
  30. Simo, J. C. and Hughes, T. J. R. (1998), Computational inelasticity. New York, Berlin, Heidelberg: Springer Verlag.
  31. Simo, J. C., Kennedy, J. G. and Govindjee, S. (1988), "Non-smooth multisurface plasticity and viscoplasticity. Loading/Unloading conditions and numerical algorithms", Int. J. Numer. Methods Eng. 26, 2161-2185. https://doi.org/10.1002/nme.1620261003
  32. Tschoegl, N. W. (1989). The Phenomenological Theory of Linear Viscoelastic Behavior. Springer-Verlag.
  33. van Zijl, G. P. A. G., de Borst, R. and Rots, J. G. (2001), "A numerical model for the time-dependent cracking of cementitious materials". Int. J. Numer. Methods Eng., 52, 637-654. https://doi.org/10.1002/nme.211
  34. Wittmann, F. H. and Roelfstra, P. E. (1980) "Total deformation of loaded drying concrete", Cement Concrete Res., 10, 601-610. https://doi.org/10.1016/0008-8846(80)90023-X

피인용 문헌

  1. Non-linear creep effects in concrete under uniaxial compression vol.67, pp.16, 2015, https://doi.org/10.1680/macr.14.00307
  2. Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures vol.37, pp.3, 2013, https://doi.org/10.1002/nag.1096
  3. Creep influence on buckling resistance of reinforced concrete shells vol.86, pp.7-8, 2008, https://doi.org/10.1016/j.compstruc.2007.07.004
  4. Selecting creep models using Bayesian methods vol.45, pp.10, 2012, https://doi.org/10.1617/s11527-012-9854-x
  5. Geometrically and materially nonlinear creep behaviour of reinforced concrete columns vol.5, 2016, https://doi.org/10.1016/j.istruc.2015.07.001
  6. Modelling creep of high strength concrete vol.7, pp.6, 2007, https://doi.org/10.12989/cac.2010.7.6.533