DOI QR코드

DOI QR Code

Proposed large-scale modelling of the transient features of a downburst outflow

  • Lin, W.E. (Department of Mechanical & Materials Engineering, The University of Western Ontario) ;
  • Orf, L.G. (Department of Geography (Meteorology), Central Michigan University) ;
  • Savory, E. (Department of Mechanical & Materials Engineering,The University of Western Ontario) ;
  • Novacco, C. (Department of Mechanical & Materials Engineering,The University of Western Ontario)
  • Received : 2006.12.31
  • Accepted : 2007.03.28
  • Published : 2007.08.25

Abstract

A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

Keywords

References

  1. Alahyari, A. A. (1995), "Dynamics of laboratory simulated microbursts", University of Minnesota, PhD thesis, December.
  2. Alahyari, A. and Longmire, E. K. (1995), "Dynamics of experimentally simulated microbursts", AIAA J., 33(11), 2128-2136. https://doi.org/10.2514/3.12957
  3. Arakawa, A. and Lamb, V. R. (1977), "Computational design of the basic dynamical processes of the UCLA general circulation model", Methods in Computational Physics, editor: J. Chang, Academic Press, New York, NY, USA, 17, 173-265.
  4. Bakke, P. (1957), "An experimental investigation of a wall jet", J. Fluid Mech., 2, 467-472. https://doi.org/10.1017/S0022112057000270
  5. Bryan, G. H. and Fritsch, J.M. (2002), "A benchmark simulation for moist nonhydrostatic numerical models", Mon. Wea. Rev., 130(12), 2917-2928. https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
  6. Caracena, F. (1982), "Is the microburst a large vortex ring imbedded in a thunderstorm downdraft?", EOS Transactions of the American Geophysical Union, 63, 899.
  7. Charba, J. (1974), "Application of gravity current model to analysis of squall-line gust front", Mon. Wea. Rev., 102(2), 140-156. https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2
  8. Chay, M. T. and Letchford, C. W. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst - Part A: stationary downburst observations", J. Wind Eng. Ind. Aerodyn., 90, 711-732. https://doi.org/10.1016/S0167-6105(02)00158-7
  9. Chen, L. and Letchford, C. W. (2004), "A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure", Eng. Struct., 26, 619-629. https://doi.org/10.1016/j.engstruct.2003.12.009
  10. Chen, L. and Letchford, C. W. (2005), "Proper orthogonal decomposition of two vertical profiles of full-scale nonstationary downburst wind speeds", J. Wind Eng. Ind. Aerodyn., 93, 187-216. https://doi.org/10.1016/j.jweia.2004.11.004
  11. Chen, L. and Letchford, C. W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerodyn., 94, 675-696. https://doi.org/10.1016/j.jweia.2006.01.021
  12. Choi, E. C. C. and Hidayat, F. A. (2002), "Dynamic response of structures to thunderstorm winds", Prog. Struct. Eng. Mater., 4, 408-416. https://doi.org/10.1002/pse.132
  13. Doviak, R. J. and Zrni , D. S. (1988), "The Doppler weather radar", in Aspects of Modern Radar, editor: E. Brookner, Artech House, Norwood, MA, USA, 487-561.
  14. Droegemeier, K. K. and Wilhelmson, R. B. (1987), "Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics", J. Atmos. Sci., 44(8), 1180-1210. https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2
  15. Fujita, T. T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
  16. Fujita, T. T. (1983), "Andrews AFB microburst", University of Chicago, Department of Geophysical Sciences, Satellite and Mesometeorology Research Project, Research Paper #205, 38 pp.
  17. Fujita, T. T. (1985), "The downburst: microburst and macroburst", University of Chicago, Department of Geophysical Sciences, Satellite and Mesometeorology Research Project, Research Paper #210, 128 pp.
  18. Gast, K. D. and Schroeder, J. L. (2003), "Supercell rear-flank downdraft as sampled in the 2002 Thunderstorm Outflow Experiment", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2233-2240.
  19. Gast, K. D. and Schroeder, J. L. (2004), "Extreme wind events observed in the 2002 Thunderstorm Outflow Experiment", 22nd Conference on Severe Local Storms, Hyannis, MA, USA, 4-8 October, Paper 7A.6.
  20. Goff, R. C. (1976), "Vertical structure of thunderstorm outflows", Mon. Wea. Rev., 104(11), 1429-1440. https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2
  21. Hjelmfelt, M.R. (1988), "Structure and life cycle of microburst outflows observed in Colorado", J. Appl. Meteor., 27(8), 900-927. https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
  22. Holmes, J. D. and Hangan, H. M. (2006), "Some engineering aspects of convective downdrafts", The Boundary Layer Wind Tunnel Laboratory, The University of Western Ontario, BLWT-2-2006, July.
  23. Holmes, J. D. and Oliver, S. E. (2000), "An empirical model of a downburst", Eng. Struct., 22, 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9
  24. Jorgensen, F.E. (2005), "How to measure turbulence with hot-wire anemometers - a practical guide", Dantec Dynamics A/S publication no. 9040U6154, Skovlunde, Denmark.
  25. Kim, J., Ho, T. C. E. and Hangan, H. (2005), "Downburst induced dynamic responses of a tall building", Proceedings of the 10th Americas Conference on Wind Engineering, Baton Rouge, USA, 31 May-4 June, CD-ROM.
  26. Klemp, J. B. and Wilhelmson, R. B. (1978), "The simulation of three-dimensional convective storm dynamics", J. Atmos. Sci., 35(6), 1070-1096. https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
  27. Letchford, C. W. and Chay, M. T. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst-Part B: moving downburst observations", J. Wind Eng. Ind. Aerodyn., 90, 733-753. https://doi.org/10.1016/S0167-6105(02)00163-0
  28. Letchford, C. W., Mans, C. and Chay, M. T. (2002), "Thunderstorms - their importance in wind engineering (a case for the next generation wind tunnel)", J. Wind Eng. Ind. Aerodyn., 90(12-15), 1415-1433. https://doi.org/10.1016/S0167-6105(02)00262-3
  29. Lin, W. E. and Savory, E. (2006), "Large-scale quasi-steady modelling of a downburst outflow using a slot jet", Wind Struct., 9(6), 419-440. https://doi.org/10.12989/was.2006.9.6.419
  30. Linden, P. F. and Simpson, J. E. (1985), "Microbursts: a hazard for aircraft", Nature, 317, 601-602. https://doi.org/10.1038/317601a0
  31. Linden, P. F. and Simpson, J. E. (1986), "Gravity-driven flows in a turbulent fluid", J. Fluid Mech., 172, 481-497. https://doi.org/10.1017/S0022112086001829
  32. Lundgren, T. S., Yao, J. and Mansour, N. N. (1992), "Microburst modelling and scaling", J. Fluid Mech., 239, 461-488. https://doi.org/10.1017/S002211209200449X
  33. Mason, M., Letchford, C. W. and James, D. (2003), "Pulsed jet simulation of a thunderstorm downburst", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2249-2256.
  34. Mason, M. S., Letchford, C. W. and James, D. L. (2005), "Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization", J. Wind Eng. Ind. Aerodyn., 93, 557-580. https://doi.org/10.1016/j.jweia.2005.05.006
  35. McNulty, R. P. (1991), "Downbursts from innocuous clouds: an example", Wea. Forecasting, 6(1), 148-154. https://doi.org/10.1175/1520-0434(1991)006<0148:DFICAE>2.0.CO;2
  36. Orf, L. G. and Anderson, J. R. (1999), "A numerical study of traveling microbursts", Mon. Wea. Rev., 127(6), 1244-1258. https://doi.org/10.1175/1520-0493(1999)127<1244:ANSOTM>2.0.CO;2
  37. Orf, L. G., Anderson, J. R. and Straka, J. M. (1996), "A three-dimensional numerical analysis of colliding microburst outflow dynamics", J. Atmos. Sci., 53(17), 2490-2511. https://doi.org/10.1175/1520-0469(1996)053<2490:ATDNAO>2.0.CO;2
  38. Proctor, F. H. (1988), "Numerical simulations of an isolated microburst. Part I: dynamics and structure", J. Atmos. Sci., 45(21), 3137-3160. https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2
  39. Proctor, F. H. (1989), "Numerical simulations of an isolated microburst. Part II: sensitivity experiments", J. Atmos. Sci., 46(14), 2143-2165. https://doi.org/10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2
  40. Proctor F. H. and Han J. (1999), "Numerical study of wake vortex interaction with the ground using the Terminal Area Simulation System", 37th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 11-14 January, AIAA-99-0754.
  41. Schlichting, H. (1979), Boundary-layer Theory, 7th edition, McGraw-Hill, New York, NY, USA.
  42. Selvam, R. P. and Holmes, J. D. (1992), "Numerical simulation of thunderstorm downdrafts", J. Wind Eng. Ind. Aerodyn., 41-44, 2817-2825.
  43. Stull, R. B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, MA, USA.
  44. Stull, R. B. (1995), Meteorology Today for Scientists and Engineers: A Technical Companion Book, West Publishing Company, St. Paul, MN, USA.
  45. Verhoff, A. (1970), "Steady and pulsating two-dimensional turbulent wall jets in a uniform stream", Princeton University, PhD thesis.
  46. Wakimoto, R. M. (1985), "Forecasting dry microburst activity over the High Plains", Mon. Wea. Rev., 113(7), 1131-1143. https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2
  47. Wakimoto, R. M. (2001), "Convectively driven high wind events", Severe Convective Storms, Meteor. Monogr., editor: C.A. Doswell III, publisher: American Meteorological Society, 28(50), 255-298. https://doi.org/10.1175/0065-9401-28.50.255
  48. Wood, G. S., Kwok, K. C. S., Motteram, N. A. and Fletcher, D. F. (2001), "Physical and numerical modelling of thunderstorm downbursts", J. Wind Eng. Ind. Aerodyn., 89, 535-552. https://doi.org/10.1016/S0167-6105(00)00090-8
  49. Xu, Z. (2004), "Experimental and analytical modeling of high intensity winds", The University of Western Ontario, PhD thesis, December.
  50. Yao, J. and Lundgren, T. S. (1996), "Experimental investigation of microbursts", Exp. Fluids, 21, 17-25. https://doi.org/10.1007/BF00204631

Cited by

  1. Turbulence characterization of downbursts using LES vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.10.020
  2. Numerical investigation of the influence of topography on simulated downburst wind fields vol.98, pp.1, 2010, https://doi.org/10.1016/j.jweia.2009.08.011
  3. A proposed model of the pressure field in a downburst vol.17, pp.2, 2013, https://doi.org/10.12989/was.2013.17.2.123
  4. Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst vol.15, pp.4, 2012, https://doi.org/10.12989/was.2012.15.4.331
  5. A coupled parametric-CFD study for determining ages of downbursts through investigation of different field parameters vol.123, 2013, https://doi.org/10.1016/j.jweia.2013.09.010
  6. Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.02.020
  7. High-resolution full-scale measurements of thunderstorm outflow winds vol.138, 2015, https://doi.org/10.1016/j.jweia.2014.12.005
  8. Numerical simulation of downburst winds vol.97, pp.11-12, 2009, https://doi.org/10.1016/j.jweia.2009.07.010
  9. Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds vol.112, 2016, https://doi.org/10.1016/j.engstruct.2016.01.003
  10. Aerodynamic forces on generic buildings subject to transient, downburst-type winds vol.137, 2015, https://doi.org/10.1016/j.jweia.2014.12.003
  11. Emerging issues and new frameworks for wind loading on structures in mixed climates vol.19, pp.3, 2014, https://doi.org/10.12989/was.2014.19.3.295
  12. Aerodynamic forces on the roofs of low-, mid- and high-rise buildings subject to transient winds vol.143, 2015, https://doi.org/10.1016/j.jweia.2015.04.020
  13. Numerical simulation of idealised three-dimensional downburst wind fields vol.32, pp.11, 2010, https://doi.org/10.1016/j.engstruct.2010.07.024
  14. Improved modelling of downburst outflows for wind engineering applications using a cooling source approach vol.99, pp.8, 2011, https://doi.org/10.1016/j.jweia.2011.03.003
  15. A parametric study of downburst line near-surface outflows vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.019
  16. Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012 vol.145, pp.9, 2017, https://doi.org/10.1175/MWR-D-17-0018.1
  17. Circumferential analysis of a simulated three-dimensional downburst-producing thunderstorm outflow vol.135, 2014, https://doi.org/10.1016/j.jweia.2014.07.004
  18. Wind pressure measurements on a cube subjected to pulsed impinging jet flow vol.12, pp.1, 2007, https://doi.org/10.12989/was.2009.12.1.077
  19. The physical simulation of thunderstorm downbursts using an impinging jet vol.12, pp.2, 2007, https://doi.org/10.12989/was.2009.12.2.133
  20. Physical modelling of a downdraft outflow with a slot jet vol.13, pp.5, 2007, https://doi.org/10.12989/was.2010.13.5.385
  21. Assessment of vertical wind loads on lattice framework with application to thunderstorm winds vol.13, pp.5, 2007, https://doi.org/10.12989/was.2010.13.5.413
  22. Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas vol.24, pp.2, 2007, https://doi.org/10.12989/was.2017.24.2.185
  23. Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00063
  24. Simulation of Atmospheric Microbursts Using a Numerical Mesoscale Model at High Spatiotemporal Resolution vol.125, pp.4, 2020, https://doi.org/10.1029/2019jd031791
  25. Numerical characterization of downburst wind field at WindEEE dome vol.30, pp.3, 2007, https://doi.org/10.12989/was.2020.30.3.231
  26. Experimental investigation on non-stationary wind loading effects generated with a multi-blade flow device vol.96, pp.None, 2007, https://doi.org/10.1016/j.jfluidstructs.2020.103049
  27. Microburst Detection With the WRF Model: Effective Resolution and Forecasting Indices vol.125, pp.14, 2007, https://doi.org/10.1029/2020jd032883
  28. Numerical Study on Plane and Radial Wall Jets to Validate the 2D Assumption for an Idealized Downburst Outflow vol.2021, pp.None, 2007, https://doi.org/10.1155/2021/9993981