References
- Alahyari, A. A. (1995), "Dynamics of laboratory simulated microbursts", University of Minnesota, PhD thesis, December.
- Alahyari, A. and Longmire, E. K. (1995), "Dynamics of experimentally simulated microbursts", AIAA J., 33(11), 2128-2136. https://doi.org/10.2514/3.12957
- Arakawa, A. and Lamb, V. R. (1977), "Computational design of the basic dynamical processes of the UCLA general circulation model", Methods in Computational Physics, editor: J. Chang, Academic Press, New York, NY, USA, 17, 173-265.
- Bakke, P. (1957), "An experimental investigation of a wall jet", J. Fluid Mech., 2, 467-472. https://doi.org/10.1017/S0022112057000270
- Bryan, G. H. and Fritsch, J.M. (2002), "A benchmark simulation for moist nonhydrostatic numerical models", Mon. Wea. Rev., 130(12), 2917-2928. https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
- Caracena, F. (1982), "Is the microburst a large vortex ring imbedded in a thunderstorm downdraft?", EOS Transactions of the American Geophysical Union, 63, 899.
- Charba, J. (1974), "Application of gravity current model to analysis of squall-line gust front", Mon. Wea. Rev., 102(2), 140-156. https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2
- Chay, M. T. and Letchford, C. W. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst - Part A: stationary downburst observations", J. Wind Eng. Ind. Aerodyn., 90, 711-732. https://doi.org/10.1016/S0167-6105(02)00158-7
- Chen, L. and Letchford, C. W. (2004), "A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure", Eng. Struct., 26, 619-629. https://doi.org/10.1016/j.engstruct.2003.12.009
- Chen, L. and Letchford, C. W. (2005), "Proper orthogonal decomposition of two vertical profiles of full-scale nonstationary downburst wind speeds", J. Wind Eng. Ind. Aerodyn., 93, 187-216. https://doi.org/10.1016/j.jweia.2004.11.004
- Chen, L. and Letchford, C. W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerodyn., 94, 675-696. https://doi.org/10.1016/j.jweia.2006.01.021
- Choi, E. C. C. and Hidayat, F. A. (2002), "Dynamic response of structures to thunderstorm winds", Prog. Struct. Eng. Mater., 4, 408-416. https://doi.org/10.1002/pse.132
- Doviak, R. J. and Zrni , D. S. (1988), "The Doppler weather radar", in Aspects of Modern Radar, editor: E. Brookner, Artech House, Norwood, MA, USA, 487-561.
- Droegemeier, K. K. and Wilhelmson, R. B. (1987), "Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics", J. Atmos. Sci., 44(8), 1180-1210. https://doi.org/10.1175/1520-0469(1987)044<1180:NSOTOD>2.0.CO;2
- Fujita, T. T. (1981), "Tornadoes and downbursts in the context of generalized planetary scales", J. Atmos. Sci., 38(8), 1511-1534. https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
- Fujita, T. T. (1983), "Andrews AFB microburst", University of Chicago, Department of Geophysical Sciences, Satellite and Mesometeorology Research Project, Research Paper #205, 38 pp.
- Fujita, T. T. (1985), "The downburst: microburst and macroburst", University of Chicago, Department of Geophysical Sciences, Satellite and Mesometeorology Research Project, Research Paper #210, 128 pp.
- Gast, K. D. and Schroeder, J. L. (2003), "Supercell rear-flank downdraft as sampled in the 2002 Thunderstorm Outflow Experiment", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2233-2240.
- Gast, K. D. and Schroeder, J. L. (2004), "Extreme wind events observed in the 2002 Thunderstorm Outflow Experiment", 22nd Conference on Severe Local Storms, Hyannis, MA, USA, 4-8 October, Paper 7A.6.
- Goff, R. C. (1976), "Vertical structure of thunderstorm outflows", Mon. Wea. Rev., 104(11), 1429-1440. https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2
- Hjelmfelt, M.R. (1988), "Structure and life cycle of microburst outflows observed in Colorado", J. Appl. Meteor., 27(8), 900-927. https://doi.org/10.1175/1520-0450(1988)027<0900:SALCOM>2.0.CO;2
- Holmes, J. D. and Hangan, H. M. (2006), "Some engineering aspects of convective downdrafts", The Boundary Layer Wind Tunnel Laboratory, The University of Western Ontario, BLWT-2-2006, July.
- Holmes, J. D. and Oliver, S. E. (2000), "An empirical model of a downburst", Eng. Struct., 22, 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9
- Jorgensen, F.E. (2005), "How to measure turbulence with hot-wire anemometers - a practical guide", Dantec Dynamics A/S publication no. 9040U6154, Skovlunde, Denmark.
- Kim, J., Ho, T. C. E. and Hangan, H. (2005), "Downburst induced dynamic responses of a tall building", Proceedings of the 10th Americas Conference on Wind Engineering, Baton Rouge, USA, 31 May-4 June, CD-ROM.
- Klemp, J. B. and Wilhelmson, R. B. (1978), "The simulation of three-dimensional convective storm dynamics", J. Atmos. Sci., 35(6), 1070-1096. https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2
- Letchford, C. W. and Chay, M. T. (2002), "Pressure distributions on a cube in a simulated thunderstorm downburst-Part B: moving downburst observations", J. Wind Eng. Ind. Aerodyn., 90, 733-753. https://doi.org/10.1016/S0167-6105(02)00163-0
- Letchford, C. W., Mans, C. and Chay, M. T. (2002), "Thunderstorms - their importance in wind engineering (a case for the next generation wind tunnel)", J. Wind Eng. Ind. Aerodyn., 90(12-15), 1415-1433. https://doi.org/10.1016/S0167-6105(02)00262-3
- Lin, W. E. and Savory, E. (2006), "Large-scale quasi-steady modelling of a downburst outflow using a slot jet", Wind Struct., 9(6), 419-440. https://doi.org/10.12989/was.2006.9.6.419
- Linden, P. F. and Simpson, J. E. (1985), "Microbursts: a hazard for aircraft", Nature, 317, 601-602. https://doi.org/10.1038/317601a0
- Linden, P. F. and Simpson, J. E. (1986), "Gravity-driven flows in a turbulent fluid", J. Fluid Mech., 172, 481-497. https://doi.org/10.1017/S0022112086001829
- Lundgren, T. S., Yao, J. and Mansour, N. N. (1992), "Microburst modelling and scaling", J. Fluid Mech., 239, 461-488. https://doi.org/10.1017/S002211209200449X
- Mason, M., Letchford, C. W. and James, D. (2003), "Pulsed jet simulation of a thunderstorm downburst", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, TX, USA, 2-5 June, 2249-2256.
- Mason, M. S., Letchford, C. W. and James, D. L. (2005), "Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization", J. Wind Eng. Ind. Aerodyn., 93, 557-580. https://doi.org/10.1016/j.jweia.2005.05.006
- McNulty, R. P. (1991), "Downbursts from innocuous clouds: an example", Wea. Forecasting, 6(1), 148-154. https://doi.org/10.1175/1520-0434(1991)006<0148:DFICAE>2.0.CO;2
- Orf, L. G. and Anderson, J. R. (1999), "A numerical study of traveling microbursts", Mon. Wea. Rev., 127(6), 1244-1258. https://doi.org/10.1175/1520-0493(1999)127<1244:ANSOTM>2.0.CO;2
- Orf, L. G., Anderson, J. R. and Straka, J. M. (1996), "A three-dimensional numerical analysis of colliding microburst outflow dynamics", J. Atmos. Sci., 53(17), 2490-2511. https://doi.org/10.1175/1520-0469(1996)053<2490:ATDNAO>2.0.CO;2
- Proctor, F. H. (1988), "Numerical simulations of an isolated microburst. Part I: dynamics and structure", J. Atmos. Sci., 45(21), 3137-3160. https://doi.org/10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2
- Proctor, F. H. (1989), "Numerical simulations of an isolated microburst. Part II: sensitivity experiments", J. Atmos. Sci., 46(14), 2143-2165. https://doi.org/10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2
- Proctor F. H. and Han J. (1999), "Numerical study of wake vortex interaction with the ground using the Terminal Area Simulation System", 37th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 11-14 January, AIAA-99-0754.
- Schlichting, H. (1979), Boundary-layer Theory, 7th edition, McGraw-Hill, New York, NY, USA.
- Selvam, R. P. and Holmes, J. D. (1992), "Numerical simulation of thunderstorm downdrafts", J. Wind Eng. Ind. Aerodyn., 41-44, 2817-2825.
- Stull, R. B. (1988), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, MA, USA.
- Stull, R. B. (1995), Meteorology Today for Scientists and Engineers: A Technical Companion Book, West Publishing Company, St. Paul, MN, USA.
- Verhoff, A. (1970), "Steady and pulsating two-dimensional turbulent wall jets in a uniform stream", Princeton University, PhD thesis.
- Wakimoto, R. M. (1985), "Forecasting dry microburst activity over the High Plains", Mon. Wea. Rev., 113(7), 1131-1143. https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2
- Wakimoto, R. M. (2001), "Convectively driven high wind events", Severe Convective Storms, Meteor. Monogr., editor: C.A. Doswell III, publisher: American Meteorological Society, 28(50), 255-298. https://doi.org/10.1175/0065-9401-28.50.255
- Wood, G. S., Kwok, K. C. S., Motteram, N. A. and Fletcher, D. F. (2001), "Physical and numerical modelling of thunderstorm downbursts", J. Wind Eng. Ind. Aerodyn., 89, 535-552. https://doi.org/10.1016/S0167-6105(00)00090-8
- Xu, Z. (2004), "Experimental and analytical modeling of high intensity winds", The University of Western Ontario, PhD thesis, December.
- Yao, J. and Lundgren, T. S. (1996), "Experimental investigation of microbursts", Exp. Fluids, 21, 17-25. https://doi.org/10.1007/BF00204631
Cited by
- Turbulence characterization of downbursts using LES vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.10.020
- Numerical investigation of the influence of topography on simulated downburst wind fields vol.98, pp.1, 2010, https://doi.org/10.1016/j.jweia.2009.08.011
- A proposed model of the pressure field in a downburst vol.17, pp.2, 2013, https://doi.org/10.12989/was.2013.17.2.123
- Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst vol.15, pp.4, 2012, https://doi.org/10.12989/was.2012.15.4.331
- A coupled parametric-CFD study for determining ages of downbursts through investigation of different field parameters vol.123, 2013, https://doi.org/10.1016/j.jweia.2013.09.010
- Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model vol.104-106, 2012, https://doi.org/10.1016/j.jweia.2012.02.020
- High-resolution full-scale measurements of thunderstorm outflow winds vol.138, 2015, https://doi.org/10.1016/j.jweia.2014.12.005
- Numerical simulation of downburst winds vol.97, pp.11-12, 2009, https://doi.org/10.1016/j.jweia.2009.07.010
- Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds vol.112, 2016, https://doi.org/10.1016/j.engstruct.2016.01.003
- Aerodynamic forces on generic buildings subject to transient, downburst-type winds vol.137, 2015, https://doi.org/10.1016/j.jweia.2014.12.003
- Emerging issues and new frameworks for wind loading on structures in mixed climates vol.19, pp.3, 2014, https://doi.org/10.12989/was.2014.19.3.295
- Aerodynamic forces on the roofs of low-, mid- and high-rise buildings subject to transient winds vol.143, 2015, https://doi.org/10.1016/j.jweia.2015.04.020
- Numerical simulation of idealised three-dimensional downburst wind fields vol.32, pp.11, 2010, https://doi.org/10.1016/j.engstruct.2010.07.024
- Improved modelling of downburst outflows for wind engineering applications using a cooling source approach vol.99, pp.8, 2011, https://doi.org/10.1016/j.jweia.2011.03.003
- A parametric study of downburst line near-surface outflows vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.019
- Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012 vol.145, pp.9, 2017, https://doi.org/10.1175/MWR-D-17-0018.1
- Circumferential analysis of a simulated three-dimensional downburst-producing thunderstorm outflow vol.135, 2014, https://doi.org/10.1016/j.jweia.2014.07.004
- Wind pressure measurements on a cube subjected to pulsed impinging jet flow vol.12, pp.1, 2007, https://doi.org/10.12989/was.2009.12.1.077
- The physical simulation of thunderstorm downbursts using an impinging jet vol.12, pp.2, 2007, https://doi.org/10.12989/was.2009.12.2.133
- Physical modelling of a downdraft outflow with a slot jet vol.13, pp.5, 2007, https://doi.org/10.12989/was.2010.13.5.385
- Assessment of vertical wind loads on lattice framework with application to thunderstorm winds vol.13, pp.5, 2007, https://doi.org/10.12989/was.2010.13.5.413
- Surface measurements of the 5 June 2013 damaging thunderstorm wind event near Pep, Texas vol.24, pp.2, 2007, https://doi.org/10.12989/was.2017.24.2.185
- Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00063
- Simulation of Atmospheric Microbursts Using a Numerical Mesoscale Model at High Spatiotemporal Resolution vol.125, pp.4, 2020, https://doi.org/10.1029/2019jd031791
- Numerical characterization of downburst wind field at WindEEE dome vol.30, pp.3, 2007, https://doi.org/10.12989/was.2020.30.3.231
- Experimental investigation on non-stationary wind loading effects generated with a multi-blade flow device vol.96, pp.None, 2007, https://doi.org/10.1016/j.jfluidstructs.2020.103049
- Microburst Detection With the WRF Model: Effective Resolution and Forecasting Indices vol.125, pp.14, 2007, https://doi.org/10.1029/2020jd032883
- Numerical Study on Plane and Radial Wall Jets to Validate the 2D Assumption for an Idealized Downburst Outflow vol.2021, pp.None, 2007, https://doi.org/10.1155/2021/9993981