DOI QR코드

DOI QR Code

An investigation of the structure of ensemble averaged extreme wind events

  • Scarabino, A. (Departamento Aeronautica, Universidad Nacional de La Plata) ;
  • Sterling, M. (School of Engineering, The University of Birmingham) ;
  • Richards, P.J. (School of Engineering, University of Auckland) ;
  • Baker, C.J. (School of Engineering, The University of Birmingham) ;
  • Hoxey, R.P. (School of Engineering, The University of Birmingham)
  • Received : 2006.09.22
  • Accepted : 2007.01.22
  • Published : 2007.04.25

Abstract

This paper examines the extreme gust profiles obtained by conditionally sampling full-scale velocity data obtained in the lower part of the atmospheric boundary layer. It is demonstrated that three different types of behaviour can be observed in the streamwise component of velocity. In all cases the corresponding vertical velocity component illustrates similar behaviour. An idealised horseshoe vortex model and a downburst model are investigated to examine if such structures can explain the behaviour observed. In addition, an empirical model is developed for an isolated gust corresponding to each of the three types of behaviour observed. It is possible that the division of the gust profile into three different types may lead to an improvement in the correlation of extreme gust events with respect to type.

Keywords

References

  1. Adrian, R. J., Meinhart, C.D. and Tomkins, C. D. (2000), "Vortex organization in the outer region of the turbulent boundary layer", J. Fluid Mech., 422, 1-54. https://doi.org/10.1017/S0022112000001580
  2. Baker, C. J. (2001), "Unsteady wind loading on a wall", Wind and Struct., 4(5), 413-440. https://doi.org/10.12989/was.2001.4.5.413
  3. Chay, M. T., Albermania, F. and Wilson, R. (2006), "Numerical and analytical simulation of downburst wind loads", Eng. Struct., 28, 240-254. https://doi.org/10.1016/j.engstruct.2005.07.007
  4. Chong, M. S., Perry, A. E. and Cantwell, B. J. (1990), "A general classification of three-dimensional flow field", Phys. Fluids A: Fluid Dynamics, 2 765. https://doi.org/10.1063/1.857730
  5. Cucitore, R., Quadrio, M. and Baron, A. (1999), "On the effectiveness and limitations of local criteria for the identification of a vortex", European J. Fluid Mech. B/Fluids, 18(2), 261-282. https://doi.org/10.1016/S0997-7546(99)80026-0
  6. Fiedler, H. E. (1988), "Coherent structures in turbulent flows", Progress in Aerospace Sci., 25, 3, 231-269. https://doi.org/10.1016/0376-0421(88)90001-2
  7. Hunt, J. C. R., Wray, A. A. and Moin, P. (1988), "Eddies, stream and convergence zones in turbulent flow", Center for Turbulence Research Report CTR-S88, 193.
  8. Jeong, J. and Hussain, A. K. M. F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462
  9. Larsen, G., Bierbooms, W. and Hansen, K. (2003), "Mean gust shapes", Risoe National Laboratory, Denmark, Report 1133 EN.
  10. McNaughton, K. G. (2004), "Turbulence structure of the unstable atmospheric surface layer and transition to the outer layer", Boundary Layer Meteorology, 112, 199-221. https://doi.org/10.1023/B:BOUN.0000027906.28627.49
  11. Oseguera, R. and Bowles, R. (1988), "A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow", NASA TM, 100632.
  12. Ovenden, N. C. and Smith, F. T. (2003), "On generation of horseshoe vortices by corrugated surfaces, surface roughnesses or pipe bends", J. Eng. Math., 45, 5-20. https://doi.org/10.1023/A:1022026115217
  13. Richards, P. J., Fong, S. and Hoxey, R. P. (1997), "Anisotropic turbulence in the atmospheric surface layer", J. Wind Eng. Ind. Aerodyn., 69-71, 903-913. https://doi.org/10.1016/S0167-6105(97)00216-X
  14. Robinson, S. K. (1991), "Coherent motions in the turbulent boundary layer", Ann. Rev. Fluid Mech., 23, 601-639. https://doi.org/10.1146/annurev.fl.23.010191.003125
  15. Skote, M., Haritonidis, J. H., and Henningson, D. S. (2002), "Varicose instabilities in turbulent boundary layers", Phys. Fluids, 14(7), 2309-2323. https://doi.org/10.1063/1.1482377
  16. Sterling, M., Baker, C. J. and Hoxey, R. P. (2003), "Short term unsteady wind loading on a low-rise building", Wind and Struct., 6(5), 403-418. https://doi.org/10.12989/was.2003.6.5.403
  17. Sterling, M., Baker, C. J., Quinn, A. D. and Hoxey, R. P. (2005), "Pressure and velocity fluctuations in the atmospheric boundary layer", Wind and Struct., 8(1), 13-34. https://doi.org/10.12989/was.2005.8.1.013
  18. Sterling, M., Baker, C. J., Richards, P. J., Hoxey, R. P. and Quinn, A. D. (2006), "An investigation of the wind statistics and extreme gusts at a rural site", Wind and Struct., 9(3), 193-215. https://doi.org/10.12989/was.2006.9.3.193
  19. Willmarth, W. W. and Lu, S. S. (1972), "Structure of the Reynolds stress near the wall", J. Fluid Mech., 55, 65-92. https://doi.org/10.1017/S002211207200165X
  20. Zhou, J., Adrian, R. J. and Balachandar, S. (1999), "Mechanisms for generating coherent packets of hairpin vortices in channel flow", J. Fluid Mech., 387, 353-396. https://doi.org/10.1017/S002211209900467X

Cited by

  1. A comparison of different methods to evaluate the wind induced forces on a high sided lorry vol.98, pp.1, 2010, https://doi.org/10.1016/j.jweia.2009.08.008
  2. The Development of a Large-Scale Particle Tracking Velocimery System for Wake Analysis of Wind-Loaded Structures vol.524, 2014, https://doi.org/10.1088/1742-6596/524/1/012172
  3. Characterizing the lower log region of the atmospheric surface layer via large-scale particle tracking velocimetry vol.55, pp.5, 2014, https://doi.org/10.1007/s00348-014-1736-2
  4. A conditional analysis of spanwise vortices within the lower atmospheric log layer vol.119, 2013, https://doi.org/10.1016/j.jweia.2013.05.007
  5. Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market vol.10, pp.1, 2018, https://doi.org/10.3390/su10010261
  6. Characterizing Coherent Wind Structures using Large-Scale Particle Tracking Velocimetry: A Proof-of-Principle Study vol.555, 2014, https://doi.org/10.1088/1742-6596/555/1/012085