DOI QR코드

DOI QR Code

A general fourth order ordinary differential equation with solution in terms of Bessel functions: theory and engineering applications

  • Attarnejad, Reza (School of Civil Engineering, University of Tehran) ;
  • Ghorbani-Tanha, Amir K. (School of Civil Engineering, University of Tehran)
  • Received : 2005.08.02
  • Accepted : 2007.07.25
  • Published : 2007.12.20

Abstract

Keywords

References

  1. Arfken, G.B. and Weber, H.J. (2001), Mathematical Methods for Physicists, 5th Edition, Harcourt Academic Press
  2. Auciello, N.M. and Ercolano, A. (1997), 'Exact solution for the transverse vibration ofa beam a part of which is a taper beam and other part is a uniform beam', Int. J. Solids Struct., 34(17), 2115-2129 https://doi.org/10.1016/S0020-7683(96)00136-9
  3. Goel, R.P. (1976), 'Transverse vibrations of tapered beams', J. Sound Vib., 47(1), 1-7 https://doi.org/10.1016/0022-460X(76)90403-X
  4. Humar, J.L. (1990), Dynamics of Structures, Prentice-Hall, Englewood Cliffs, NJ
  5. Mabie, H.H. and Rogers, C.B. (1964), 'Transverse vibrations of tapered cantilever beams with end loads', J. Acoust. Soc. Am., 36(3), 463-469 https://doi.org/10.1121/1.1918979
  6. Mabie, H.H. and Rogers, C.B. (1968), 'Transverse vibrations of tapered cantilever beams with end supports', J. Acoust. Soc. Am., 44(6), 1739-1741 https://doi.org/10.1121/1.1911327
  7. Mabie, H.H. and Rogers, C.B. (1972), 'Transverse vibrations of double-tapered cantilever beams', J. Acoust. Soc. Am., 51(5), 1771-1774 https://doi.org/10.1121/1.1913028
  8. Mabie, H.H. and Rogers, C.B. (1974), 'Transverse vibrations of double-tapered cantilever beams with end support and with end mass', J. Acoust. Soc. Am., 55(5), 986-991 https://doi.org/10.1121/1.1914673
  9. Watson, G.N. (1958), A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England
  10. Yang, K.Y. (1990), 'The natural frequencies of a non-uniform beam with a tip mass and with translational and rotational springs', J. Sound Vib., 137(2), 339-341 https://doi.org/10.1016/0022-460X(90)90799-6

Cited by

  1. Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials vol.36, pp.7, 2012, https://doi.org/10.1016/j.apm.2011.09.073
  2. Dynamic basic displacement functions for free vibration analysis of tapered beams vol.17, pp.14, 2011, https://doi.org/10.1177/1077546310396430
  3. The Effects of Intra-membrane Viscosity on Lipid Membrane Morphology: Complete Analytical Solution vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31251-6