References
- Anonymous (1995), Vikaram Sarabai Space Centre (VSSC), Trivandrum, Feast-C Users Manual, SEQ; SDS Group, ISRO, Trivandrum
- Bellman, R. and Casti, J. (1971), 'Differential quadrature and long term Integration', J. Math. Anal. Appl., 34, 235-238 https://doi.org/10.1016/0022-247X(71)90110-7
- Beltzer, A.I. (1990a), 'Engineering analysis via symbolic computation - a breakthrough', Appl. Mech. Rev., 43(6), 119-127 https://doi.org/10.1115/1.3120790
- Beltzer, A.I. (1990b), A Symbolic Computation Approach, Variational and Finite Element Methods, Springer, Berlin
- Benaroya, H. and Rehak, M. (1987), 'The neumann series/bom approximation applied to parametrically excited stochastic systems', Prob. Eng. Mech., 2, 75-81
- Benker, H. (1999), Practical Use of MATHCAD- Solving Mathematical Problems with a Computer Algebra System, Springer
- Bert, C.W. and Malik, M. (1996), 'Free vibration analysis of tapered rectangular plates by differential quadrature method- a semi analytical approach' , J. Sound Vib., 190(1), 41-63 https://doi.org/10.1006/jsvi.1996.0046
- Cecchi, M.M. and Lami, C. (1977), 'Automatic generation of stiffuess marix for finite element analysis', Int. J. Numer. Meth. Eng., 11, 396-400 https://doi.org/10.1002/nme.1620110216
- Chen, W.F. and Atsuta, T. (1977), Theory of Beam-Columns - Vol. 2. Space behaviour and design', McGraw-Hill Inc., New York
- Civalek, O. (2004), 'Application of Differential Quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns', Eng. Struct., 26(2), 171-186 https://doi.org/10.1016/j.engstruct.2003.09.005
- Civalek, O. and Ulker, M. (2004), 'Harmonic Differential Quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates', Struct. Eng. Mech., 17(1), 1-14 https://doi.org/10.12989/sem.2004.17.1.001
- Civalek, O. (2005), 'Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of harmonic differential quadrature - finite difference methods', Int. J. Pres. Ves. Pip., 82, 470-479 https://doi.org/10.1016/j.ijpvp.2004.12.003
- Iyengar, N.G.R. (1988), Structural Stability of Columns and Plates, Chichester: Ellis Horwood
- Komchoff, A.R. and Fenves, S.J. (1979), 'Symbolic generation of finite element system matrices', Comput. Struct., 10, 119-124 https://doi.org/10.1016/0045-7949(79)90078-6
- Krowiak, A. (2006), 'Symbolic computing in spline based differential quadrature method', Commun. Numer. Meth. En., 22, 1097-1107 https://doi.org/10.1002/cnm.872
- Levy, R., Chen, C.S., Lin, C.W and Yang, Y.B. (2004), 'Geometric stiffuess of members using symbolic algebra', Eng. Struct., 26, 759-767 https://doi.org/10.1016/j.engstruct.2003.12.011
- Li, Q.S. and Huang, Y.Q. (2004), 'Moving least - squares differential quadrature method for free vibration of antisymmetric laminates', J. Eng. Mech., ASCE, 130(12), 1447-1457 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:12(1447)
- Mbakogu, F.C. and Pavlovic, M.N. (1998), 'Closed form fundamental frequency estimate for polar orthotropic circular plates', App. ACO, 54, 207-228 https://doi.org/10.1016/S0003-682X(97)00094-7
- Mbakogu, F.C. and Pavolic, M.N. (2000), 'Bending of clamped orthotropic rectangular plates: A variational symbolic solution', Comput. Struct., 77, 117-128 https://doi.org/10.1016/S0045-7949(99)00217-5
- Pavlovic, M.N. (2003), 'Review article symbolic computation in structural engineering', Comput. Struct., 81, 2121-2136 https://doi.org/10.1016/S0045-7949(03)00286-4
- Rosman, R. (1966), Tables for the Internal Forces of Pierced Shear Walls Subjected to Lateral Loads, Verlag von Wilhelm Ernst & Sohn, Berlin
- Sammet, J.E. (1969), Programming Languages: History and Fundamentals, Prentice-hall, New Jersey
- Sherbourne, A.N. and Pandey, M.D. (1991), 'Differential quadrature method in the buckling analysis of beams and composite plates', Comput. Struct., 40(4), 903-911 https://doi.org/10.1016/0045-7949(91)90320-L
- Shu, C., Chen, W and Du, H. (2000), 'Free vibration analysis of curvilinear quadrilateral plates by the differential quadrature method', J. Comput. Phy., 163, 452-466 https://doi.org/10.1006/jcph.2000.6576
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Berlin, Springer
- Timoshenko, S.P. and Krieger, S.W. (1959). Theory of Plates and Shells, McGraw-Hill Book Co., Inc., New York
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-hill, New York
- Tomasiello, S. (1998), 'Differential quadrature method application to initial and boundary value problems', J. Sound Vib., 218(4), 573-585 https://doi.org/10.1006/jsvi.1998.1833
- Wilkins, Jr. D.J. (1973), 'Applications of a symbolic algebra manipulation languages for composite structures analysis', Comput. Struct., 3, 801-807 https://doi.org/10.1016/0045-7949(73)90059-X
- Wilson, E.L. (2002), Three Dimensional Static and Dynamic Analysis of Structures, Comput. Struct., Inc, Berkeley, California
- Wolfram S. (1991), MATHEMATICA: A System for Doing Mathematics by Computer, 2nd ed. New York, Addison Wesley
- Wu, T.Y. and Liu, G.R. (1999), 'A differential quadrature as a numerical method to solve differential equations', Computat. Mech., 21, 197-205
Cited by
- Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods vol.37, pp.6, 2013, https://doi.org/10.1016/j.apm.2012.09.024
- Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams vol.74, 2013, https://doi.org/10.1016/j.ijmecsci.2013.04.004
- Free vibration analysis of axially functionally graded tapered Timoshenko beams using differential transformation element method and differential quadrature element method of lowest-order vol.49, pp.4, 2014, https://doi.org/10.1007/s11012-013-9847-z
- Free vibration and stability of tapered Euler–Bernoulli beams made of axially functionally graded materials vol.36, pp.7, 2012, https://doi.org/10.1016/j.apm.2011.09.073
- Buckling of fully and partially embedded non-prismatic columns using differential quadrature and differential transformation methods vol.28, pp.2, 2007, https://doi.org/10.12989/sem.2008.28.2.221
- Solution method for the classical beam theory using differential quadrature vol.33, pp.6, 2007, https://doi.org/10.12989/sem.2009.33.6.675
- Free vibration of tapered arches made of axially functionally graded materials vol.45, pp.4, 2007, https://doi.org/10.12989/sem.2013.45.4.569
- Sobre una clase de fórmulas de cubicación encajadas en el simplex vol.6, pp.1, 2007, https://doi.org/10.18272/aci.v6i1.149