참고문헌
- Abreu, A.I., Carrer, J.A.M. and Mansur, W.J. (2003), 'Scalar wave propagation in 2D: A BEM formulation based on the operational quadrature method', Eng. Anal. Bound. Elem., 27, 101-105 https://doi.org/10.1016/S0955-7997(02)00087-5
- Abreu, A.I., Mansur, W.J. and Carrer, J.A.M. (2006), 'Initial conditions contribution in a BEM formulation based on the convolution quadrature method', Int. J. Numer. Meth. Eng., 67, 417-434 https://doi.org/10.1002/nme.1645
- Antes, H., Schanz, M. and Alvermann, S. (2004), 'Dynamic analyses of plane frames by integral equations for bars and timoshenko beams', J. Sound Vib., 276, 807-836 https://doi.org/10.1016/j.jsv.2003.08.048
- Beskos, D.E. (1997), 'Boundary elements in dynamic analysis: Part II (1986-1996)', Appl. Mecha. Rev., 50, 149-197 https://doi.org/10.1115/1.3101695
- Beskos, D.E. (2003), Dynamic Analysis of Structures and Structural Systems (in Boundary Element Advances in Solid Mechanics, D. Beskos and G. Maier, editors) CISM, Udine
- Carrer, J.A.M. and Mansur, W.J. (1996), 'Time-domain BEM analysis for the 2D scalar wave equation: Initial conditions contributions to space and time derivatives', Int. J. Numer. Meth. Eng., 39, 2169-2188 https://doi.org/10.1002/(SICI)1097-0207(19960715)39:13<2169::AID-NME949>3.0.CO;2-1
- Carrer, J.A.M. and Mansur, W.J. (2002), 'Time-dependent fundamental solution generated by a not impulsive source in the boundary element method analysis of the 2D scalar wave equation', Commun. Numer. Meth. En., 18, 277-285 https://doi.org/10.1002/cnm.487
- Carrer, J.A.M. and Mansur, W.J. (2004), 'Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation', Comput. Mech., 34, 387-399 https://doi.org/10.1007/s00466-004-0582-0
- Carrer, J.A.M. and Mansur, W.J. (2006), 'Solution of the two-dimensional scalar wave equation by the time-domain boundary element method: Lagrange truncation strategy in time integration', Struct. Eng. Mech., 23, 263-278 https://doi.org/10.12989/sem.2006.23.3.263
- Demirel, V. and Wang, S. (1987), 'Efficient boundary element method for two-dimensional transient wave propagation problems', Appl. Math. Model., 11, 411-416 https://doi.org/10.1016/0307-904X(87)90165-X
- Dominguez, J. (1993), Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton and Boston
- Dubner, H. and Abate, J. (1968), 'Numerical inversion of Laplace transforms by relating them to the Finite fourier cosine transform', J. Assoc. Comput. Machinery, 15, 115-123 https://doi.org/10.1145/321439.321446
- Durbin, F. (1974), 'Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method', Comput. J., 17, 371-376 https://doi.org/10.1093/comjnl/17.4.371
- Gaul, L. and Schanz, M. (1999), 'A comparative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains', Comput. Meth. Appl. Mech. Eng., 179, 111-123 https://doi.org/10.1016/S0045-7825(99)00032-8
- Gaul, L. and Wenzel, W. (2002), 'A coupled symmetric BE -FE method for acoustic fluid-structure interaction', Eng. Analysis with Boundary Elements; 26, 629-636 https://doi.org/10.1016/S0955-7997(02)00020-6
- Hadamard, J. (1952), Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover Publications, New York
- Hatzigeorgiou, G.D. and Beskos, D.E. (2002), 'Dynamic elastoplastic analysis of 3-D structures by the domain/boundary element method', Comput. Struct., 80, 339-347 https://doi.org/10.1016/S0045-7949(01)00176-6
- Houbolt, J.C. (1950), 'A recurrence matrix solution for the dynamic response of elastic aircraft', J. Aeronautical Sci., 17, 540-550 https://doi.org/10.2514/8.1722
- Kontoni, D.P.N. and Beskos, D.E. (1993), 'Transient dynamic elastoplastic analysis by the dual reciprocity BEM', Eng. Anal. Bound. Elem., 12, 1-16 https://doi.org/10.1016/0955-7997(93)90063-Q
- Kurt, H.R. (1975), 'The numerical evaluation of principal value integrals by finite-part integration', Numer. Math., 24, 205-210 https://doi.org/10.1007/BF01436592
- Lubich, C. (1988a), 'Convolution quadrature and discretized operational calculus I', Numer. Math., 52, 129-145 https://doi.org/10.1007/BF01398686
- Lubich, C. (1988b), 'Convolution quadrature and discretized operational calculus II', Numer. Math., 52, 413-425 https://doi.org/10.1007/BF01462237
- Mansur, W.J. (1983), 'A time-stepping technique to solve wave propagation problems using the boundary element method', Ph.D. Thesis, University of Southampton, England
- Mansur, W.J. and deLima-Silva, W. (1992), 'Efficient time truncation in two-dimensional BEM analysis of transient wave propagation problems', Earthq. Eng. Struct. Dyn., 21, 51-63 https://doi.org/10.1002/eqe.4290210104
- Mansur, W.J., Abreu, A.I. and Carrer, J.A.M. (2004), 'Initial conditions contribution in frequency-domain analysis', Comput. Model. Eng. Sci., 6, 31-42
- Partridge, P.W., Brebbia, C.A. and Wrobel, L.C. (1992), The Dual Reciprocity Boundary Element Method, Computational Mechanics Publications, Southampton, Boston
- Schanz, M. (2001), 'Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids', Eng. Anal. Bound. Elem., 25, 363-376 https://doi.org/10.1016/S0955-7997(01)00022-4
- Schanz, M. and Antes, H. (1997), 'Application of 'Operational Quadrature Methods' in time domain boundary element methods', Meccanica, 32, 179-186 https://doi.org/10.1023/A:1004258205435
- Soares Jr., D. and Mansur, W.J. (2004), 'Compression of time generated matrices in two-dimensional time-domain elastodynamic BEM analysis', Int. J. Numer. Meth. Eng., 61, 1209-1218 https://doi.org/10.1002/nme.1111
- Souza, L.A., Carrer, J.A.M. and Martins, C.J. (2004), 'A fourth order finite difference method applied to elastodynamics: Finite element and boundary element formulations', Struct. Eng. Mech., 17, 735-749 https://doi.org/10.12989/sem.2004.17.6.735
- Stephenson, G. (1970), An Introduction to Partial Differential Equations for Science Students, Longman