DOI QR코드

DOI QR Code

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie (Department of Mechanics and Engineering Science, Shijiazhuang Railway Institute) ;
  • Liu, Jinxi (Department of Mechanics and Engineering Science, Shijiazhuang Railway Institute)
  • Received : 2006.10.13
  • Accepted : 2007.07.13
  • Published : 2007.11.30

Abstract

The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

Keywords

References

  1. Avellaneda, M. and Harshe, G. (1994), 'Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites', J. Intell. Mater. Syst. Struct., 5, 501-513 https://doi.org/10.1177/1045389X9400500406
  2. Benveniste, Y. (1995), 'Magneto-electric effect in fibrous composites with piezoelectric and piezomagnetic phases', Phys. Rev. B, B51, 16424-16427
  3. Buchanan, G.R. (2003), 'Free vibration of an infinite magneto-electro-elastic cylinder', J. Sound Vib., 268, 413-426 https://doi.org/10.1016/S0022-460X(03)00357-2
  4. Gao, C.F., Kessler, H. and Balke, H. (2003a), 'Crack problem in magnetoelectroelastic solids. Part I: Exact solution of a crack', Int. J. Eng. Sci., 41, 969-981 https://doi.org/10.1016/S0020-7225(02)00323-3
  5. Gao, C.F., Tong, P. and Zhang, T.Y. (2003b), 'Interfacial crack problems in magnetoelectroelastic solids', Int. J. Eng. Sci., 41, 2105-2121 https://doi.org/10.1016/S0020-7225(03)00206-4
  6. Chen, J.Y., Pan, E. and Chen, H.L. (2007), 'Wave propagation in magneto-electro-elastic multilayered plates', Int. J. Solids Struct., 44, 1073-1085 https://doi.org/10.1016/j.ijsolstr.2006.06.003
  7. Chen, Z.T. and Yu, S.W. (1997), 'Anti-plane dynamic fracture mechanics in piezoelectric materials', Int. J. Fract., 85, L3-L12
  8. Chen, Z.T. and Yu, S.W. (1998), 'A semi-infinite crack under anti-plane mechanical impact in piezoelectric materials', Int. J. Fract., 88, L53-L56
  9. Dascalu, C. and Maugin, G.A. (1995), 'On the dynamic fracture of piezoelectric materials', Q. J. Mech. Appl. Math., 48, 237-255 https://doi.org/10.1093/qjmam/48.2.237
  10. Ding, H.J., Chen, B. and Liang, J. (1996), 'General solutions for coupled equations for piezoelectric media', Int. J. Solids Struct., 33, 2283-2298 https://doi.org/10.1016/0020-7683(95)00152-2
  11. Du, J.K., Shen, Y.P., Ye, D.Y. and Yue, F.R. (2004), 'Scattering of anti-plane shear waves by a partially debonded magneto-electro-elastic circular cylindrical inhomogeneity', Int. J. Eng Sci., 42, 887-913 https://doi.org/10.1016/j.ijengsci.2003.07.010
  12. Feng, W.J., Xue, Y. and Zou, Z.Z. (2005), 'Crack growth of interface crack between two dissimilar magneto-electro-elastic materials under anti-plane mechanical and in-plane electric magnetic impact', Theor. Appl. Fract. Mech., 43, 376-394 https://doi.org/10.1016/j.tafmec.2005.03.008
  13. Feng, W.J. and Su, R.K.L. (2006), 'Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip', Int. J. Solids Struct., 43, 5196-5216 https://doi.org/10.1016/j.ijsolstr.2005.07.050
  14. Feng, W.J., Su, R.K.L. and Liu, Y.Q. (2006), 'Scattering of SH waves by an arc-shaped interface crack between a cylindrical magneto-electro-elastic inclusion and matrix with the symmetry of 6mm', Acta Mech., 183, 81-102 https://doi.org/10.1007/s00707-005-0291-6
  15. Feng, W.J. and Su, R.K.L. (2007), 'Dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic plate', Eur. J. Mech. A/Solids, 26, 363-379 https://doi.org/10.1016/j.euromechsol.2006.07.004
  16. Freund, L.B. (1990), Dynamic Fracture Mechanics, Cambridge University Press, Cambridge
  17. Gu, B., Yu, S.W. and Feng, X.Q. (2002), 'Transient response of an insulating crack between dissimilar piezoelectric layers under mechanical and electrical impacts', Arch. Appl. Mech., 72, 615-629 https://doi.org/10.1007/s00419-002-0239-4
  18. Harshe, G., Dougherty, J.P. and Newnham, R.E. (1993), 'Theoretical modeling of 3-0/0-3 magnetoelectric composites', Int. J. Appl. Electrom., 4, 161-171
  19. Hou, P.F. and Leung, A.Y.T. (2004), 'The transient responses of magneto-electro-elastic hollow cylinders', Smart Mater. Struct., 13, 762-776 https://doi.org/10.1088/0964-1726/13/4/014
  20. Hu, K.Q., Kang, Y.L. and Li, G.Q. (2006), 'Moving crack at the interface between two dissimilar magnetoelectroelastic materials', Acta Mech., 182, 1-16 https://doi.org/10.1007/s00707-005-0285-4
  21. Huang, J.H. and Kuo, W.S. (1997), 'The analysis of piezoelectric/piezomagnetic composite materials containing an ellipsoidal inhomogeneity', J. Appl. Phys., 81, 1378-1386 https://doi.org/10.1063/1.363874
  22. Khutoryansky, N.M. and Sosa, H. (1995), 'Dynamic representation formula and fundamental solutions for piezoelectricity', Int. J. Solids Struct., 32, 3307-3325 https://doi.org/10.1016/0020-7683(94)00308-J
  23. Kwon, S.M. and Lee, K.Y. (2000), 'Transient response of a rectangular medium with a center crack', Eur. J. Mech. A/Solids, 20, 457-468 https://doi.org/10.1016/S0997-7538(01)01137-8
  24. Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), 'Layerwise partial mixed finite element analysis of magneto-electro-elastic plates', Compos. Struct., 82, 1293-1301 https://doi.org/10.1016/j.compstruc.2004.03.026
  25. Li, J.Y. (2000), 'Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials', Int. J. Eng Sci., 38, 1993-2011 https://doi.org/10.1016/S0020-7225(00)00014-8
  26. Li, J.Y. and Dunn, M.L. (1998), 'Micromechanics of magneto-electro-elastic composite materials: average fields and effective behavior', J. Intell. Mater. Syst. Struct., 9, 404-416 https://doi.org/10.1177/1045389X9800900602
  27. Li, S. and Mataga, P.A. (1996a), 'Dynamic crack propagation in piezoelectric materials-part I. Electrode solution', J. Mech. Phys. Solid, 44, 1799-1830 https://doi.org/10.1016/0022-5096(96)00055-5
  28. Li, S. and Mataga, P.A. (1996b), 'Dynamic crack propagation in piezoelectric materials-part II. Vacuum solution', J. Mech. Phys. Solid, 44, 1831-1866 https://doi.org/10.1016/0022-5096(96)00056-7
  29. Li, X. (2001), 'Transient response of a piezoelectric material with a semi-infinite mode III crack under impact loads', Int. J. Fract., 111, 119-130 https://doi.org/10.1023/A:1012208524059
  30. Muskhelishvili, N.I. (1953), Singular Integral Equations. Noordhoff, Groningen
  31. Nan, C.W. (1994), 'Magneto-electric effect in composites of piezoelectric and piezomagnetic phases', Phys. Rev. B, B50, 6082-6088
  32. Pan, E. (2001), 'Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech., ASME, 68, 608-618 https://doi.org/10.1115/1.1380385
  33. Pan, E. and Heyliger, P.R. (2002), 'Free vibrations of simply supported and multilayered magneto-electro-elastic plates', 252, 429-442 https://doi.org/10.1006/jsvi.2001.3693
  34. Ramirez, F., Heyliger, P.R. and Pan, E. (2006), 'Free vibration response of two-dimensional magneto-electro-elastic laminated plates', J. Sound Vib., 292, 626-644 https://doi.org/10.1016/j.jsv.2005.08.004
  35. Shindo, Y., Katsura, H. and Yan, W. (1996), 'Dynamic stress intensity factor of a cracked electric medium in a uniform electric field', Acta Mech., 117, 1-10 https://doi.org/10.1007/BF01181032
  36. Shindo, Y., Narita, F. and Ozawa, E. (1999), 'Impact response of a finite crack in an orthotropic piezoelectric ceramic', Acta Mech., 137, 99-107 https://doi.org/10.1007/BF01313147
  37. Sih, G.C. and Song, Z.F. (2003), 'Magnetic and electric poling effects associated with crack growth in $BaTiO_{3}-CoFe_{2}O_{4}$ composite', Theor. Appl. Fract. Mech., 39, 209-227 https://doi.org/10.1016/S0167-8442(03)00003-X
  38. Song, Z.F. and Sih, G.C. (2003), 'Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation', Theor. Appl. Fract. Mech., 39, 189-207 https://doi.org/10.1016/S0167-8442(03)00002-8
  39. Van Suchtelen, J. (1972), 'Product properties: a new application of composite materials', Phillips Res. Reports, 27, 28-37
  40. Wang, X.M. and Shen, Y.P. (1996), 'The conservation laws and path-independent integrals for linear electro-magneto-elastic media with an application', Int. J. Solids Struct., 33, 865-878 https://doi.org/10.1016/0020-7683(95)00062-F
  41. Wang, X.Y. and Yu, S.W. (2000), 'Transient response of a crack in a piezoelectric strip objected to the mechanical and electrical impacts: mode III problem', Int. J. Solids Struct., 37, 5795-5808 https://doi.org/10.1016/S0020-7683(99)00268-1
  42. Wu, T.L. and Huang, J.H. (2000), 'Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases', Int. J. Solids Struct., 37, 2981-3009 https://doi.org/10.1016/S0020-7683(99)00116-X
  43. Zhou, Z.G., Wu, L.Z. and Wang, B. (2005), 'The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials', Eur. J. Mech. A/Solids, 24, 253-262 https://doi.org/10.1016/j.euromechsol.2004.10.006

Cited by

  1. Propagation of a mode-III interfacial crack in a piezoelectric–piezomagnetic bi-material vol.49, pp.18, 2012, https://doi.org/10.1016/j.ijsolstr.2012.05.013
  2. Concentrated force-induced fracture of a multiferroic composite cylinder 2017, https://doi.org/10.1007/s00707-017-2011-4
  3. Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate vol.21, pp.4, 2007, https://doi.org/10.12989/sss.2018.21.4.493