DOI QR코드

DOI QR Code

Tabu search based optimum design of geometrically non-linear steel space frames

  • Degertekin, S.O. (Department of Civil Engineering, Dicle University) ;
  • Hayalioglu, M.S. (Department of Civil Engineering, Dicle University) ;
  • Ulker, M. (Department of Civil Engineering, Firat University)
  • 투고 : 2006.08.08
  • 심사 : 2007.05.02
  • 발행 : 2007.11.30

초록

In this paper, two algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search. The first algorithm utilizes the features of short-term memory (tabu list) facility and aspiration criteria and the other has long-term memory (back-tracking) facility in addition to the aforementioned features. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Allowable stress design (ASD) specification, maximum drift (lateral displacement) and interstorey drift constraints were imposed on the frames. The algorithms were applied to the optimum design of three space frame structures. The designs obtained using the two algorithms were compared to each other. The comparisons showed that the second algorithm resulted in lighter frames.

키워드

참고문헌

  1. Abido, M.A. (2002), 'Optimal power flow using tabu search algorithm', Electr. Pow. Compo. Sys., 30(5), 469-483 https://doi.org/10.1080/15325000252888425
  2. Ad Hoc Committee on Serviceability Research (1986), 'Structural serviceability: A critical appraisal and research needs', J. Struct. Eng., ASCE, 112(12), 2646-2664 https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2646)
  3. American Institute of Steel Construction (1989), Manual of steel construction - allowable stress design, Chicago, IIIionis
  4. American Society of Civil Engineers (2000), Minimum Design Loads for Buildings and other Structures, Reston, Virginia
  5. Aruga, K. (2005), 'Tabu search optimization of horizontal and vertical alignments of forest roads', J. Forest Res., 10(4), 275-284 https://doi.org/10.1007/s10310-004-0136-5
  6. Bennage, W.A. and Dhingra, A.K. (1995), 'Optimization of truss topology using tabu search', Int. J. Numer. Meth. Eng., 38, 4035-4052 https://doi.org/10.1002/nme.1620382308
  7. Bland, J.A. (1995), 'Discrete-variable optimal structural design using tabu search', Struct. Opt., 10, 87-93 https://doi.org/10.1007/BF01743535
  8. Bland, J.A. (1998a), 'Structural design optimization with reliability constraints using tabu search', Eng. Optimiz., 30, 55-74 https://doi.org/10.1080/03052159808941238
  9. Bland, J.A. (1998b), 'A memory-based technique for optimal structural design', Eng. Appl. Artif. Intel., 11(3), 319-325 https://doi.org/10.1016/S0952-1976(97)00053-5
  10. Chamberland, S. and Sanso, B. (2002), 'Tabu search and post optimization algorithms for the update of telecommunication networks', Can. J. Elect. Comput. E., 27(2), 67-74
  11. Chan, C.M. and Grierson, D.E. (1993), 'An efficient resizing technique for the design of tall steel buildings subject to multiple drift constraints', J. Struct. Des. Tall Build., 2, 17-32 https://doi.org/10.1002/tal.4320020103
  12. Cunha, M.D. and Riberio, L. (2004), 'Tabu search algorithms for water network optimization', Eur. J. Oper. Res., 157(3), 746-758 https://doi.org/10.1016/S0377-2217(03)00242-X
  13. Dhingra, A.K. and Bennage, W.A. (1995), 'Discrete and continuous variable structural optimization using tabu search', Eng. Optimiz., 24, 177-196 https://doi.org/10.1080/03052159508941189
  14. Dumonteil, P. (1992), 'Simple equations for effective length factors', Eng. J., AISC, 3, 111-115
  15. Glover, F. (1989), 'Tabu search-Part I', ORSA J. Comp., 1(3), 190-206 https://doi.org/10.1287/ijoc.1.3.190
  16. Glover, F. (1990), 'Tabu search-Part II', ORSA J. Comp., 2(1), 4-32 https://doi.org/10.1287/ijoc.2.1.4
  17. Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Massachusetts
  18. Jeon, Y.J. and Kim, J.C. (2004), 'Application of simulated annealing and tabu search for loss minimization in distribution systems', Int. J. Electr. Pow. Energy Sys., 26(1), 9-18 https://doi.org/10.1016/S0142-0615(03)00066-8
  19. Kargahi, M., Anderson, J.C. and Dessouky, M.M. (2006), 'Structural weight optimization of frames using tabu search. I: Optimization procedure', J. Struct. Eng., ASCE, 132(12), 1858-1868 https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1858)
  20. Levy, R. and Spillers, W.R. (1994), Analysis of Geometrically Nonlinear Structures, Chapman and Hall, New York
  21. Manoharan, S. and Shanmuganathan, S. (1999), 'A comparison of search mechanisms for structural optimization', Comp. Struct., 73(1-5), 363-372 https://doi.org/10.1016/S0045-7949(98)00287-9
  22. Peng, J.N., Sun, Y.Z. and Wang, H.F. (2006), 'Optimal PMU placement for full network observability using tabu search algorithm', Int. J. Electr. Pow. Energy Sys., 28(4), 223-231 https://doi.org/10.1016/j.ijepes.2005.05.005
  23. Rama Mohan Rao, A. and Arvind, N. (2007), 'Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing', Struct. Eng. Mech., 25(2), 239-268 https://doi.org/10.12989/sem.2007.25.2.239
  24. Richards, E.W. and Gunn, E.A. (2003), 'Tabu search design for difficult forest management optimization problems', Can. J. Forest Res., 33(6), 1126-1133 https://doi.org/10.1139/x03-039
  25. Sait, S.M. and Zahra, M.M. (2002), 'Tabu search based circuit optimization', Eng. Appl. Artif. Intel., 15(3-4), 357-368 https://doi.org/10.1016/S0952-1976(02)00054-4
  26. Soegiarso, R. and Adeli, H. (1994), 'Impact of vectorization on large scale structural optimization', Struct. Opt., 7, 117-125 https://doi.org/10.1007/BF01742517
  27. Soegiarso, R. and Adeli, H. (1997), 'Optimum load and resistance factor design of steel space-frame structures', J. Struct. Eng., ASCE, 123(2), 184-192 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(184)
  28. Sun, M.H. (2006), 'Solving the uncapacitated facility location problem using tabu search', Comput. Operations Res., 33(9), 2563-2589 https://doi.org/10.1016/j.cor.2005.07.014
  29. Spillers, W.R. (1990), 'Geometric stifuess matrix for space frames', Comp. Struct., 36(1), 29-37 https://doi.org/10.1016/0045-7949(90)90171-W
  30. Uniform Building Code (1997), International Conference of Building Officials, Whittier, California

피인용 문헌

  1. Combined stability of geometrically imperfect conical shells vol.67, 2013, https://doi.org/10.1016/j.tws.2013.02.007
  2. An Enhanced Imperialist Competitive Algorithm for optimum design of skeletal structures 2018, https://doi.org/10.1016/j.swevo.2017.12.001
  3. Optimum Seismic Design of 3D Irregular Steel Frames Using Recently Developed Metaheuristic Algorithms vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000760
  4. Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2007, https://doi.org/10.12989/sem.2017.63.5.607
  5. Hybrid tabu search algorithm for weight optimization of planar steel frames vol.53, pp.8, 2021, https://doi.org/10.1080/0305215x.2020.1793977