DOI QR코드

DOI QR Code

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z. (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Istanbul Technical University) ;
  • Demir, F. (Department of Civil Engineering, Faculty of Engineering, Suleyman Demirel University)
  • Received : 2006.04.03
  • Accepted : 2007.06.12
  • Published : 2007.11.30

Abstract

Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

Keywords

References

  1. Celep, Z. (1984), 'Dynamic response of a circular beam on a Wieghardt-type elastic foundation', Zeitschrift fur angewandte Mathematik and Mechanik, 64(7), 279-286 https://doi.org/10.1002/zamm.19840640707
  2. Celep, Z. (1990), 'In-plane vibrations of circular rings on a tensionless foundation', J. Sound Vib., 143(3), 461-471 https://doi.org/10.1016/0022-460X(90)90736-J
  3. Celep, Z. and Demir, F. (2005), 'Circular rigid beam on a tensionless two-parameter elastic foundation', Zeitschrift fur Angewandte matik und Mechanik, 85(6), 431-439 https://doi.org/10.1002/zamm.200310183
  4. Celep, Z., Malaika, A. and Abu-Hussein, M. (1989), 'Force vibrations of a beam on a tensionless foundation', J. Sound Vib., 128(2), 235-246 https://doi.org/10.1016/0022-460X(89)90768-2
  5. Catal, S. (2006), 'Analysis of free vibration of beam on elastic soil using differential transform method', Struct. Eng. Mech., 24(1), 51-62 https://doi.org/10.12989/sem.2006.24.1.051
  6. Coskun, I. (2003), 'The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load', Euro. J. Mech. -A/Solids, 22(1), 151-161 https://doi.org/10.1016/S0997-7538(03)00011-1
  7. De Rosa, M.A. (1995), 'Free vibrations of Timoshenko beams on two-parameters elastic foundation', Comput. Struct., 57(1), 151-156 https://doi.org/10.1016/0045-7949(94)00594-S
  8. Eisenberger, M. and Bielak, J. (1992), 'Finite beams on infinite two-parameter elastic foundations', Comput. Struct., 42(4), 661-664 https://doi.org/10.1016/0045-7949(92)90133-K
  9. El-Mously, M. (1999), 'Fundamental frequencies on Timoshenko beams mounted on Pasternak foundation', J. Sound Vib., 228(2), 452-457 https://doi.org/10.1006/jsvi.1999.2464
  10. Filipich, C.P. and Rosales, M.B. (1988), 'A variant of Rayleigh's method applied to Timoshenko beams embedded in a Winkler-Pasternak medium', J. Sound Vib., 124(3), 443-451 https://doi.org/10.1016/S0022-460X(88)81386-5
  11. Filipich, C.P. and Rosales, M.B. (2002), 'A further study about the behavior of foundation piles and beams in a Winkler-Pasternak soil', Int. J. Mech. Sci., 44(1), 21-36 https://doi.org/10.1016/S0020-7403(01)00087-X
  12. Franciosi, C. and Masi, A. (1993), 'Free vibrations of foundation beams on two-parameter elastic soil', Comput. Struct., 47(3), 419-426 https://doi.org/10.1016/0045-7949(93)90237-8
  13. Guler, K. (2004), 'Circular elastic plate resting on tensionless Pasternak foundation', J. Eng. Mech., ASCE, 130(10), 1251-1254 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1251)
  14. Gulkan, P. and Alemdar, B.N. (1999), 'An exact finite element for a beam on a two-parameter elastic foundation: A revisit', Struct. Eng. Mech., 7(3), 259-276 https://doi.org/10.12989/sem.1999.7.3.259
  15. Kerr, A.D. (1964), 'Elastic and viscoelastic foundation models', J. Appl. Mech. ASME, 31, 491-498 https://doi.org/10.1115/1.3629667
  16. Kerr, A.D. (1976), 'On the derivations of well-posed boundary value problems in structural mechanics', Int. J. Solids Struct., 12(1), 1-11 https://doi.org/10.1016/0020-7683(76)90069-X
  17. Kerr, A.D. and Coffin, D.W. (1991), 'Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off', Int. J. Solids Struct., 28(4), 413-422 https://doi.org/10.1016/0020-7683(91)90057-M
  18. Kerr, A.D. and Soicher, N.E. (1996), 'A peculiar set of problems in linear structural mechanics', Int. J. Solids Struct., 33(6), 899-911 https://doi.org/10.1016/0020-7683(95)00078-O
  19. Lin, L. and Adams, G.O. (1987), 'Beams on tensionless elastic foundation', J. Eng. Mech., ASCE, 113(4), 542-553 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
  20. Mallik, A.K., Chandra, S. and Singh, A.B. (2006), 'Steady-state response of an elastically supported infinite beam to a moving load', J. Sound Vib., 291(3-5), 1148-1169 https://doi.org/10.1016/j.jsv.2005.07.031
  21. Matsunaga, H. (1999), 'Vibration and buckling of deep beam-columns on two-parameter elastic foundations', J. Sound Vib., 228(2), 359-376 https://doi.org/10.1006/jsvi.1999.2415
  22. Morfidis, K. and Avamidis, I.E. (2002), 'Formulation of a generalized beam element on a two-parameter elastic with semi-rigid connections and rigid offsets', Comput. Struct., 80(25), 1919-1934 https://doi.org/10.1016/S0045-7949(02)00226-2
  23. Narasimba, G.K. (1973), 'Buckling of beams supported by Pasternak foundation', J. Eng. Mech., ASCE, 99(3), 565-579
  24. Nogami, T. and O'Neill, M.W. (1985), 'Beam on generalized two-parameter foundation', J. Eng. Mech., ASCE, 111(5), 664-679 https://doi.org/10.1061/(ASCE)0733-9399(1985)111:5(664)
  25. Onu, G. (2000), 'Shear effect in beam finite element on two-parameter elastic foundation', J. Struct. Eng., ASCE, 126(9), 1104-1107 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1104)
  26. Rades, M. (1970), 'Steady-state response of a finite beam on a Pasternak-type foundation', Int. J. Solids Struct., 6, 739-756 https://doi.org/10.1016/0020-7683(70)90014-4
  27. Rao, G.V. (2003), 'Large-amplitude free vibrations of uniform beams on Pasternak foundation', J. Sound Vib., 263(4), 954-960 https://doi.org/10.1016/S0022-460X(02)01486-4
  28. Razaqpur, A.G. and Shah, K.R. (1991), 'Exact analysis of beams on two-parameter elastic foundations', Int. J. Solids Struct., 27(4), 435-454 https://doi.org/10.1016/0020-7683(91)90133-Z
  29. Shen, H.-S. and Yu, L. (2004), 'Nonlinear bending behavior of Reissner-Mindlin plates with free edges resting on tensionless elastic foundation', Int. J. Solids Struct., 41(16-17), 4809-4825 https://doi.org/10.1016/j.ijsolstr.2004.02.013
  30. Smith, T. (1969), 'Buckling of a beam on a Wieghardt-type elastic foundation', Zeitschrift fur angewandte Mathematik and Mechanik, 43, 641-645
  31. Tsai, N.C. and Westmann, R.E. (1967), 'Beams on tensionless foundation', J. Eng. Mech., ASCE, 93, 1-12
  32. Wang, T.M. and Gagnon, M.J. (1978), 'Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations', J. Sound Vib., 59(2), 211-220 https://doi.org/10.1016/0022-460X(78)90501-1
  33. Wang, T.M. and Stephens, J.E. (1977), 'Natural frequencies of Timoshenko beams on Pasternak foundations', J. Sound Vib., 51(2), 149-155 https://doi.org/10.1016/S0022-460X(77)80029-1
  34. Weisman, Y. (1970), 'On foundations that react in compression only', J. Appl. Mech., ASME, 37(7), 1019-1030 https://doi.org/10.1115/1.3408653
  35. Weisman, Y. (1971), 'Onset of separation between a beam and a tensionless elastic foundation under a moving load', Int. J. Mech. Sci., 13, 707-711 https://doi.org/10.1016/0020-7403(71)90070-1
  36. Ylinen, A. and Mikkola, M. (1967), 'A beam on a Wieghardt-type elastic foundation', Int. J. Solids Struct., 3, 617-633 https://doi.org/10.1016/0020-7683(67)90012-1
  37. Yokoyama, T. (1991), 'Vibrations of Timoshenko beam-columns on two-parameter elastic foundations', Earthq. Eng. Struct. Dyn., 20(4), 355-370 https://doi.org/10.1002/eqe.4290200405
  38. Zhang, Y. and Murphy, K.D. (2004), 'Response of a finite beam in contact with a tensionless foundation under symmetric and asymmetric loading', Int. J. Solids Struct., 41(24-25), 6745-6758 https://doi.org/10.1016/j.ijsolstr.2004.05.028

Cited by

  1. The analysis of beams on layered poroelastic soils with anisotropic permeability and compressible pore fluid vol.40, pp.11-12, 2016, https://doi.org/10.1016/j.apm.2016.01.032
  2. Nonlinear free vibrations of quintic inextensional beams lying on Winkler elastic substrate based on three-mode assumptions vol.228, pp.2, 2014, https://doi.org/10.1177/1464419314522780
  3. Static analysis of an infinite beam resting on a tensionless Pasternak foundation vol.28, pp.4, 2009, https://doi.org/10.1016/j.euromechsol.2009.03.003
  4. Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading vol.30, pp.1, 2008, https://doi.org/10.12989/sem.2008.30.1.021
  5. Derivation of conditions of complete contact for a beam on a tensionless Winkler elastic foundation with Mathematica vol.72, 2016, https://doi.org/10.1016/j.mechrescom.2016.01.007
  6. Linear and nonlinear vibration of non-uniform beams on two-parameter foundations using p-elements vol.36, pp.5, 2009, https://doi.org/10.1016/j.compgeo.2008.12.006
  7. Tensionless-frictionless interaction of flexible annular foundation with a transversely isotropic multi-layered half-space vol.39, pp.2, 2015, https://doi.org/10.1002/nag.2300
  8. Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading vol.34, pp.3, 2010, https://doi.org/10.12989/sem.2010.34.3.319
  9. Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load vol.37, pp.1, 2011, https://doi.org/10.12989/sem.2011.37.1.061
  10. Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation vol.37, pp.5, 2007, https://doi.org/10.12989/sem.2011.37.5.489
  11. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation vol.40, pp.3, 2007, https://doi.org/10.12989/sem.2011.40.3.373
  12. Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2007, https://doi.org/10.12989/sem.2011.40.4.583
  13. Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation vol.42, pp.1, 2007, https://doi.org/10.12989/sem.2012.42.1.039
  14. Nonlinear Winkler-based Beam Element with Improved Displacement Shape Functions vol.17, pp.1, 2007, https://doi.org/10.1007/s12205-013-1606-0