References
- Babich, I.Y. and Kilin, V.I. (1985), 'Stability of a three-layer orthotropic cylindrical shell under axial loading', Soviet Appl. Mech., 21, 566-669 https://doi.org/10.1007/BF00887566
- Biesheuvel, P.M. and Verweij, H. (2000), 'Calculation of the composition profile of a functionally graded material produced by centrifugal casting', J. Am. Ceram. Soc., 83(4), 743-749 https://doi.org/10.1111/j.1151-2916.2000.tb01268.x
- Birman, V. (1995), 'Buckling of functionally graded hybrid composite plates', In: Proc. 10th Conf. on Eng. Mech., Boulder, USA
- Chandrasekaran, K. (1977), 'Torsional vibrations of some layered shells of revolution', J. Sound Vib., 55, 27-37 https://doi.org/10.1016/0022-460X(77)90579-X
- Chung, H. (1981), 'Free vibration analysis of circular cylindrical shells', J. Sound Vib., 74, 331-350 https://doi.org/10.1016/0022-460X(81)90303-5
- Donnell, L.H. (1934a), 'Stability of thin-walled tubes under torsion', NACA Tr-479
- Donnell, L.H. (1934b), 'A new theory for the buckling of the thin cylinders under axial compression and bending', Trans Asme, 56, 795-806
- Feldman, E. and Aboudi, J. (1997), 'Buckling analysis of functionally graded plates subjected to uniaxial loading', Compos. Struct., 38, 29-36 https://doi.org/10.1016/S0263-8223(97)00038-X
- Groves, J.F. and Wadley, H.N.G. (1997), 'Functionally graded materials synthesis via low vacuum directed vapor deposition', Compos. Part. B-Eng., 28(1-2), 57-69 https://doi.org/10.1016/S1359-8368(96)00023-6
- He, X.Q., Liew, K.M., Ng, T.Y. and Sivashanker, A. (2002), 'A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers', Int. J. Num. Meth. Eng., 54(6), 853-870 https://doi.org/10.1002/nme.451
- Jones, R.M. and Morgan, H.S. (1975), 'Buckling and vibration of cross-ply laminated circular cylindrical shells', AIAA J., 13(5), 664-671 https://doi.org/10.2514/3.49782
- Kardomateas, G.A. (1993), 'Buckling of thick orthotropic cylindrical shells under external pressure', J. Appl. Mech. ,60, 195-2002 https://doi.org/10.1115/1.2900745
- Kardomateas, G.A. (1993), 'Stability loss in thick transversely isotropic cylindrical shells under axial compression', J. Appl. Mech., 60(2),506-513 https://doi.org/10.1115/1.2900822
- Kardomateas, G.A. (1995), 'Bifurcation of equilibrium in thick orthotropic cylindrical shells under axial compression', J. Appl. Mech., 62(1), 43-52 https://doi.org/10.1115/1.2895882
- Kieback, B., Neubrand, A. and Riedel, H. (2003), 'Processing techniques for functionally graded materials', Mater. Sci. Eng. A-Struct. Material Prop. Micro-Struct. Process, 362(1-2), 81-105 https://doi.org/10.1016/S0921-5093(03)00578-1
- Kim, Y.S., Kardomateas, G.A. and Zureick, A. (1999), 'Buckling of thick orthotropic cylindrical shells under torsion', J. Appl. Mech., 66, 41-50 https://doi.org/10.1115/1.2789167
- Kitipornchai, S., Yang, J. and Liew, K.M. (2004), 'Semi analytical for nonlinear vibration of laminated FGM plates with geometric imperfections', Int. J. Solids Struct., 41, 2235-2257 https://doi.org/10.1016/j.ijsolstr.2003.12.019
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), 'Random vibration of the functionally graded laminates in thermal environments', Comput. Meth. Appl. Mech. Eng., 195, 1075-1095 https://doi.org/10.1016/j.cma.2005.01.016
- Koizumi, M. (1993), 'The concept of FGM', Ceramic Transactions, Functionally Gradient Mater., 34, 3-10
- Lam, K.Y. and Loy, C.T. (1995), 'Analysis of rotating laminated cylindrical shells by different thin shell theories', J. Sound Vib., 186, 23-35 https://doi.org/10.1006/jsvi.1995.0431
- Lei, M.M. and Cheng, S. (1969), 'Buckling of composite and homogeneous isotropic cylindrical shells under axial and radial loading', J. Appl. Mech., 791-798
- Leissa, A.W. (1973), Vibration of Shells. NASA SP-288
- Liew, K.M., He, X.Q., Ng, T.Y. and Kitipornchai, S. (2002), 'Active control of FGM shell subjected to a temperature gradient via piezoelectric sensor/actuator patches', Int. J. Num. Meth. Eng., 55, 653-668 https://doi.org/10.1002/nme.519
- Liew, K.M., Ng, T.Y. and Zhao, X. (2002), 'Vibration of axially loaded rotating cross-ply laminated cylindrical shells via ritz method', J. Eng. Mech., 128(9), 1001-1007 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(1001)
- Liew, K.M., Yang, J. and Wu, Y.F. (2006), 'Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient', Comput. Meth. Appl. Mech. Eng., 195(9-12), 1007-1026 https://doi.org/10.1016/j.cma.2005.04.001
- Loy, C.T, Lam, K.Y. and Reddy, J.N. (1999), 'Vibration of functionally graded cylindrical shells', Int. J. Mech. Sci., 41, 309-324 https://doi.org/10.1016/S0020-7403(98)00054-X
- Lu, P., Lee, H.P. and Lu, C. (2005), 'An exact solution for functionally graded piezoelectric laminates in cylindrical bending', Int. J. Mech. Sci., 47, 437-458 https://doi.org/10.1016/j.ijmecsci.2005.01.012
- Mandal, P. and Calladine, C.R. (2000), 'Buckling of thin cylindrical shells under axial compression', Int. J. Solid Struct., 37, 4509-4525 https://doi.org/10.1016/S0020-7683(99)00160-2
- Mao, R. and Lu, C.H. (1999), 'Buckling analysis of a laminated cylindrical shell under torsion subjected to mixed boundary conditions', Int. J. Solids Struct., 36, 3821-3835 https://doi.org/10.1016/S0020-7683(98)00178-4
- Mirfakhraei, P. and Redekop, D. (1998), 'Buckling of circular cylindrical shells by the differential quadrature method', Int. J. Pressure Vessels Piping, 75, 347-353 https://doi.org/10.1016/S0308-0161(98)00032-5
- Mises, R. (1929), 'Der Kritische Aussendruck Fur Allseits Belastete Cylindrisher Rohre, Festscher', Zum. 70 Geburtstage von prof. A Stodola, Zurich, 418-432. (Germany)
- Mortensen, A. and Suresh, S. (1995), 'Functionally graded metals and metal ceramic composites', I. Proc. Int. Mater. Rev., 40(6), 239-265
- Na, K.S. and Kim, J.H. (2006), 'Three-dimensional thermo-mechanical buckling analysis for functionally graded composite plates', Compos. Struct. in press
- Ng, T.Y., He, X.Q. and Liew, K.M. (2002), 'Finite element modeling of active control of functionally graded shells in frequency domain via piezoelectric sensors and actuators', Comput. Mech., 28(1), 1-9 https://doi.org/10.1007/s004660100264
- Ng, T.Y, Lam, K.Y., Liew, K.M. and Reddy, N.J. (2001), 'Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading', Int. J. Solids Struct.. 38, 1295-1309 https://doi.org/10.1016/S0020-7683(00)00090-1
- Park, H.C., Cho, C.M. and Choi, Y.H., (2001), 'Torsional buckling analysis of composite cylinders', AIAA J., 39, 951-955 https://doi.org/10.2514/2.1400
- Patel, B.P., Gupta, M.S., Loknath, M.S. and Kadu, C.P. (2005), 'Free vibration analysis of a functionally graded elliptical cylindrical shells using higher-order theory', Compos. Struct., 69, 259-270 https://doi.org/10.1016/j.compstruct.2004.07.002
- Pelekh, B.L. and Mamchur, I.L. (1978), 'Torsion of the laminated transversal isotropic cylindrical shells', Soviet Appl. Mech., 14, 24-28
- Pinna, R. and Ronalds, B.F. (2000), 'Hydrostatic buckling of shells with various boundary conditions', J. Constr. Steel. Res., 56(1), 1-16 https://doi.org/10.1016/S0143-974X(99)00104-2
- Pitakthapanaphong, S. and Busso, E.P. (2002), 'Self-consistent elasto-plastic stress solutions for functionally graded material systems subjected to thermal transients', J. Mech. Phys. Solids, 50, 695-716 https://doi.org/10.1016/S0022-5096(01)00105-3
- Pradhan, S.C. (2005), 'Vibration suppression of FGM composite shells using embedded magnetostrictive layers', Int. J. Solids Struct., 42, 2465-2488 https://doi.org/10.1016/j.ijsolstr.2004.09.049
- Pradhan, S.C. and Reddy, J.N. (2004), 'Vibration control of composite shells using embedded actuating layers', Smart Mater. Struct., 13, 1245-1257 https://doi.org/10.1088/0964-1726/13/5/029
- Pradhan, S.C., Loy, C.T., Lam, K.Y and Reddy, J.N. (2000), 'Vibration characteristics of functionally graded cylindrical shells under various boundary conditions', Appl. Acoust., 61(1), 119-129
- Put, S., Vleugels, J. and Van Der Biest, O. (2003), 'Micro structural engineering of functionally graded materials by electrophoretic deposition', J. Mater. Process. Technol., 143, 572-577 https://doi.org/10.1016/S0924-0136(03)00370-4
- Ramirez, F., Heyliger, P.R. and Pan, E. (2006), 'Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach', Composites: Part B Eng., 37, 10-20 https://doi.org/10.1016/j.compositesb.2005.05.009
- Reddy, J.N. and Cheng, Z.Q. (2001), 'Three-dimensional solutions of smart functionally graded plates', J. Appl. Mech., 68, 234-241 https://doi.org/10.1115/1.1347994
- Reddy, J.N. and Chin, C.D. (1998), 'Thermo-mechanical analysis of functionally graded cylinders and plates', J. Thermal Stresses, 21, 593-602 https://doi.org/10.1080/01495739808956165
- Sachenkov, A.V. and Baktieva, L,U. (1978), 'Approach to the solution of dynamic stability problems of thin shells (in Russian)', Research on the Theory of Plates and Shells, Kazan State Univ., 13, 137-52
- Shahsiah, R. and Eslami, M.R. (2003), 'Thermal buckling of functionally graded cylindrical shell', J. Thermal Stresses, 26, 277-294 https://doi.org/10.1080/713855892
- Sheinman, I., Shaw, D. and Simitses, G.J. (1983), 'Nonlinear analysis of axially loaded laminated cylindrical shells', Comput. Struct., 16(1-4), 131-137 https://doi.org/10.1016/0045-7949(83)90155-4
- Shen, H.S. (2002), 'Post-buckling of shears deformable laminated cylindrical shell', Eng. Mech., 3, 296-306
- Shen, H.S. (2003), 'Post-buckling analysis of pressure loaded functionally graded cylindrical shells in thermal environments', Eng. Struct., 25, 487-497 https://doi.org/10.1016/S0141-0296(02)00191-8
- Shen, H.S. and Noda, N. (2005), 'Post-buckling of FGM cylindrical shell under combined axial and radial mechanical loads in thermal environments', Int. J. Solids Struct., 42, 4641-4662 https://doi.org/10.1016/j.ijsolstr.2005.02.005
- Shen, Z.J. and Nygren, M. (2002), 'Laminated and functionally graded materials prepared by spark plasma sintering', Key. Eng. Mater., 206(2), 2155-2158 https://doi.org/10.4028/www.scientific.net/KEM.206-213.2155
- Simitses, G.J. and Anastasiadis, J.S. (1991), 'Buckling of axially loaded, moderately-thick, cylindrical laminated shells', Compos. Eng., 1(6),375-391 https://doi.org/10.1016/0961-9526(91)90042-Q
- Sofiyev, A.H. (2003), 'Dynamic buckling of functionally graded cylindrical shells under non-periodic impulsive loading', Acta Mech., 165, 153-162
- Sofiyev, A.H. (2004), 'The stability of functionally graded truncated conical shells subjected to A-periodic impulsive loading', Int. J. Solids Struct., 41(13), 3411-3424 https://doi.org/10.1016/j.ijsolstr.2004.02.003
- Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufoglu, E. (2006), 'The vibration and stability of a three-layered conical shell containing a FGM layer subjected to axial compressive load', Acta Mech. (in press)
- Tabiei, A. and Simitses, G.J. (1994), 'Buckling of moderately thick laminated cylindrical shells under trsion'. AIAA J., 21, 639-647
- Tan, D. (2000), 'Torsional buckling analysis of thin and thick shells of revolution', Int. J. Solids Struct., 37, 3055-3078 https://doi.org/10.1016/S0020-7683(99)00120-1
- Touloukian, Y.S. (1967), Thermo-Physical Properties of High Temperature Solid Materials, New York: Macmillan
- Vinson, J.R. and Sierakowski, R.L. (1986), The Behavior of Structures Composed of Composite Material. Nijhoft, Dordrecht
- Vodenitcharova, T. and Ansourian, P. (1996), 'Buckling of circular cylindrical shells subjected to uniform lateral pressure', Eng. Struct., 18, 604-614 https://doi.org/10.1016/0141-0296(95)00174-3
- Volmir, A.S. (1967), Stability of Elastic Systems, Nauka: Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508
- Warburton, G.B. (1965), 'Vibration of thin cylindrical shells', J. Mech. Eng. Sci., 7, 399-407 https://doi.org/10.1243/JMES_JOUR_1965_007_062_02
- Weingarten, V.I. (1964), 'Free vibrations of multilayered cylindrical shells', Exp. Mech., 200-205
- Woo, J. and Mequid, S.A. (2001), 'Nonlinear analysis of functionally graded plates and shallow shells', Int. J. Solids Struct., 38, 7409-7421 https://doi.org/10.1016/S0020-7683(01)00048-8
- Xue, J. and Hoo Fatt, M.S. (2002), 'Buckling of a non-uniform, long cylindrical shell subjected to external hydrostatic pressure', Eng. Struct., 24, 1027-1034 https://doi.org/10.1016/S0141-0296(02)00029-9
- Yang, J. and Shen, H.S. (2003), 'Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels', J. Sound. Vib., 261, 871-893 https://doi.org/10.1016/S0022-460X(02)01015-5
- Yang, J, Liew, K.M., Wu, Y.F. and Kitipornchai, S. (2006), 'Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties', Int. J. Solids Struct., 43, 307-324 https://doi.org/10.1016/j.ijsolstr.2005.04.001
Cited by
- Buckling analysis of composite panels and shells with different material properties by discrete singular convolution (DSC) method vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.077
- Effect of a functionally graded interlayer on the non-linear stability of conical shells in elastic medium vol.99, 2013, https://doi.org/10.1016/j.compstruct.2012.11.044
- On the Buckling of Functionally Graded Cylindrical Shells Under Combined External Pressure and Axial Compression vol.132, pp.6, 2010, https://doi.org/10.1115/1.4001659
- Vibration of Three-Layered FGM Cylindrical Shells with Middle Layer of Isotropic Material for Various Boundary Conditions vol.04, pp.11, 2014, https://doi.org/10.4236/wjm.2014.411032
- Vibration and stability of axially compressed truncated conical shells with functionally graded middle layer surrounded by elastic medium vol.20, pp.2, 2014, https://doi.org/10.1177/1077546312461025
- Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.024
- Size-dependent buckling analysis of different chirality SWCNT under combined axial and radial loading based on orthotropic model vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa7318
- Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads vol.101-102, 2015, https://doi.org/10.1016/j.ijmecsci.2015.07.025
- Buckling of bimorph functionally graded piezoelectric cylindrical nanoshell 2018, https://doi.org/10.1177/0954406217738033
- Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel vol.94, 2016, https://doi.org/10.1016/j.compositesb.2016.03.031
- On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure vol.119, 2016, https://doi.org/10.1016/j.ijmecsci.2016.10.006
- Dynamic instability of three-layered cylindrical shells containing an FGM interlayer vol.93, 2015, https://doi.org/10.1016/j.tws.2015.03.006
- Stability and vibration of sandwich cylindrical shells containing a functionally graded material core with transverse shear stresses and rotary inertia effects vol.230, pp.14, 2016, https://doi.org/10.1177/0954406215593570
- On the Buckling of the Layered Cylindrical Shell with FGM Face Sheets Subjected to the Axial Load footnotemark vol.123, pp.4, 2013, https://doi.org/10.12693/APhysPolA.123.731
- Non-linear stability analysis of truncated conical shell with functionally graded composite coatings in the finite deflection vol.51, 2013, https://doi.org/10.1016/j.compositesb.2013.03.029
- Torsional vibration and buckling of the cylindrical shell with functionally graded coatings surrounded by an elastic medium vol.45, pp.1, 2013, https://doi.org/10.1016/j.compositesb.2012.09.046
- Mechanical buckling of cylindrical shells with varying material properties vol.224, pp.8, 2010, https://doi.org/10.1243/09544062JMES1978
- The Stability of Cylindrical Shells Containing an FGM Layer Subjected to Axial Load on the Pasternak Foundation vol.02, pp.04, 2010, https://doi.org/10.4236/eng.2010.24033
- Buckling analysis of functionally graded material circular hollow cylinders under combined axial compression and external pressure vol.69, 2013, https://doi.org/10.1016/j.tws.2013.04.002
- Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells vol.53, pp.2, 2017, https://doi.org/10.1007/s10778-017-0804-8
- Thermally excited vibrations of aircraft structural elements vol.59, pp.4, 2016, https://doi.org/10.3103/S106879981604005X
- Influence of the 3D material tailoring on snap-through and snap-back post-buckling behaviors of steel-wire-reinforced hybrid 3D graded orthotropic shallow cylindrical panels pp.2041-2983, 2018, https://doi.org/10.1177/0954406218760062
- Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure vol.5, pp.4, 2018, https://doi.org/10.1088/2053-1591/aab914
- Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening vol.66, pp.5, 2007, https://doi.org/10.12989/sem.2018.66.5.557
- Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM vol.48, pp.4, 2020, https://doi.org/10.1080/15397734.2019.1646137