DOI QR코드

DOI QR Code

Exact buckling load of a restrained RC column

  • Received : 2006.08.22
  • Accepted : 2007.02.28
  • Published : 2007.10.20

Abstract

Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

Keywords

References

  1. ACI-ASCE Committee 441 (1966), Reinforced Concrete Columns, P.O. Box 4754, Redford Station, Detroit, Michigan 48219
  2. Aristizabal-Ochoa, J.D. (1997), 'Stability problems of columns and frames', ACI Struct. J., 94, 389-398
  3. Aristizabal-Ochoa, J.D. (1997), 'Stability and minimum bracing for stepped columns with semirigid connections: Classical elastic approach', Struct. Eng. Mech., 5, 415-431 https://doi.org/10.12989/sem.1997.5.4.415
  4. Battini, J.M. (1999), Plastic Instability Analysis of Plane Frames Using a Co-rotational Approach, KTH, TS-Hogskoletryckeriet, ISSN 1103-4270, Stockholm
  5. Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories, Oxford University Press, New York
  6. Bazant, Z.P. and Xiang, Y.Y. (1997), 'Inelastic buckling of concrete column in braced frame', J. Struct. Eng., ASCE, 123, 634-642 https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(634)
  7. Bratina, S., Saje, M. and Planinc, I. (2004), 'On materially and geometrically non-linear analysis of reinforcedconcrete plane frames', Int. J. Solids Struct., 41,7181-7207 https://doi.org/10.1016/j.ijsolstr.2004.06.004
  8. Bratina, S., Saje, M. and P1aninc, I. (2005), 'Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2', Int. J. Solids Struct., 42, 5715-5733 https://doi.org/10.1016/j.ijsolstr.2005.03.015
  9. Engesser, F. (1889), 'Uber die knickfestigkeit gerader Stabe', Zeitschrift fur Architekten Ing. Vereins zu Hannover, 35, 455-462
  10. Essa, H. (1998), 'New stability equation for columns in unbraced frames', Struct. Eng. Mech., 6, 411-425 https://doi.org/10.12989/sem.1998.6.4.411
  11. Euler, L. (1744), 'Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes', Lausanne
  12. Eurocode 2 (2002), Design of Concrete Structures, Part 1: General Rules and Rules for Buildings, prEN 1992-1-1 (Revised final draft)
  13. Gadalla, M.A. and Abdalla, J.A. (2006), 'Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties', Struct. Eng. Mech., 22, 631-645 https://doi.org/10.12989/sem.2006.22.5.631
  14. Gantes, C.J. and Mageirou, G.E. (2005), 'Improved stiffness distribution factor for evaluation of effective buckling lengths in multi-story sway frames', Eng. Struct., 27, 1113-1124 https://doi.org/10.1016/j.engstruct.2005.02.009
  15. Groper, M. and Kenig, M.J. (1987), 'Inelastic buckling of non-prismatic columns', J. Eng. Mech., ASCE, 113, 1233-1239 https://doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1233)
  16. Hutchinson, J.W. (1974), 'Plastic buckling', Adv. Appl. Mech., 14, 67-144 https://doi.org/10.1016/S0065-2156(08)70031-0
  17. Keller, H.B. (1970), 'Nonlinear bifurcation', J. Differential Equations, 7, 417-434 https://doi.org/10.1016/0022-0396(70)90090-2
  18. Kim, J.K. and Yang, J.-K. (1995), 'Buckling behaviour of slender high-strength concrete columns', Eng. Struct., 17, 39-51 https://doi.org/10.1016/0141-0296(95)91039-4
  19. Liu, Y. and Xu, L. (2005), 'Story-based stability analysis of multi-story unbraced frames', Struct. Eng. Mech., 19, 679-705 https://doi.org/10.12989/sem.2005.19.6.679
  20. Mageirou, G.E. and Gantes, C.J. (2006), 'Buckling strength of multi-story sway, non-sway and partially-sway frames with semi-rigid connections', J. Cons. Steel Res., 62, 893-905 https://doi.org/10.1016/j.jcsr.2005.11.019
  21. Mahini, M.R. and Seyyedian, H. (2006), 'Effective length factor for columns in braced frames considering axial forces on restraining members', Struct. Eng. Mech., 22, 685-700 https://doi.org/10.12989/sem.2006.22.6.685
  22. Planinc, I. and Saje, M., (1999), 'A quadratically convergent algorithm for the computation of stability points: the application of the determinant of the tangent stiffness matrix', Comput. Meth. Appl. Mech. Eng., 169, 89-105 https://doi.org/10.1016/S0045-7825(98)00178-9
  23. Planinc, I., Saje, M. and Cas, B. (2001), 'On the local stability condition in the planar beam finite element', Struct. Eng. Mech., 12(5), 507-526
  24. Reissner, E. (1972), 'On one-dimensional finite-strain beam theory: The plane problem', J. Appl. Mech. Phy. (ZAMP), 23, 795-804 https://doi.org/10.1007/BF01602645
  25. Shanley, F.R. (1947), 'Inelastic column theory', J. Aeronautical Sci., 14, 261-264 https://doi.org/10.2514/8.1346
  26. Wang, C.M., Wang, C.Y. and Reddy, J.N. (2005), Exact Solutions for Buckling of Structural Members, CRC Press LLC

Cited by

  1. Analytical solution for buckling of asymmetrically delaminated Reissner’s elastic columns including transverse shear vol.45, pp.3-4, 2008, https://doi.org/10.1016/j.ijsolstr.2007.09.027
  2. Inelastic buckling load of a locally weakened reinforced concrete column vol.34, 2012, https://doi.org/10.1016/j.engstruct.2011.09.006
  3. BUCKLING OF AN AXIALLY RESTRAINED STEEL COLUMN UNDER FIRE LOADING vol.11, pp.03, 2011, https://doi.org/10.1142/S0219455411004245
  4. Exact buckling analysis of composite elastic columns including multiple delamination and transverse shear vol.30, pp.6, 2008, https://doi.org/10.1016/j.engstruct.2007.10.003
  5. Buckling analysis of embedded concrete columns armed with carbon nanotubes vol.17, pp.5, 2016, https://doi.org/10.12989/cac.2016.17.5.567
  6. Global analysis of drill string buckling in the channel of a curvilinear bore-hole vol.40, 2017, https://doi.org/10.1016/j.jngse.2017.01.021
  7. Semi-analytical buckling analysis of reinforced concrete columns exposed to fire vol.71, 2015, https://doi.org/10.1016/j.firesaf.2014.11.018
  8. Buckling of timber columns exposed to fire vol.46, pp.7, 2011, https://doi.org/10.1016/j.firesaf.2011.07.003
  9. Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface vol.49, pp.4, 2014, https://doi.org/10.12989/sem.2014.49.4.427
  10. Buckling of restrained steel columns due to fire conditions vol.8, pp.2, 2007, https://doi.org/10.12989/scs.2008.8.2.159
  11. Application of fiber element in the assessment of the cyclic loading behavior of RC columns vol.34, pp.3, 2007, https://doi.org/10.12989/sem.2010.34.3.301