DOI QR코드

DOI QR Code

Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method

  • Huang, X. (School of Civil and Chemical Engineering, RMIT University) ;
  • Xie, Y.M. (School of Civil and Chemical Engineering, RMIT University)
  • Received : 2006.05.10
  • Accepted : 2007.04.03
  • Published : 2007.09.10

Abstract

This paper presents a modified and improved bi-directional evolutionary structural optimization (BESO) method for topology optimization. A sensitivity filter which has been used in other optimization methods is introduced into BESO so that the design solutions become mesh-independent. To improve the convergence of the optimization process, the sensitivity number considers its historical information. Numerical examples show the effectiveness of the modified BESO method in obtaining convergent and mesh-independent solutions. A study of the effects of various BESO parameters on the solution is then conducted to determine the appropriate values for these parameters.

Keywords

References

  1. Bendsoe, M.P. and Kikuchi, N. (1988), 'Generating optimal topologies in structural design using a homogenization method', Comput. Method. Appl. M, 71, 197-224 https://doi.org/10.1016/0045-7825(88)90086-2
  2. Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin Heidelberg
  3. Bruns, T.E. and Tortorelli, D.A. (2003), 'An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms', Int. J. Numer. Meth. Eng., 57, 1413-1430 https://doi.org/10.1002/nme.783
  4. Li, Q., Steven, G.P. and Xie, Y.M. (2001), 'A simple checkerboard suppression algorithm for evolutionary structural optimization', Struct. Multidiscip. O., 22, 230-239 https://doi.org/10.1007/s001580100140
  5. Murio, D.A. (1993), The Mollification Method and the Numerical Solution of Ill-posed Problems, Wiley: New York
  6. Querin, O.M., Young, V., Steven, G.P. and Xie, Y.M. (2000), 'Computational efficiency and validation of bidirectional evolutionary structural optimisation', Comput. Method. Appl. M, 189, 559-573 https://doi.org/10.1016/S0045-7825(99)00309-6
  7. Rietz, A. (2001), 'Sufficiency of a finite exponent in SIMP (power law) methods', Struct. Multidiscip. O., 21, 159-163 https://doi.org/10.1007/s001580050180
  8. Sigmund, O. and Peterson, J. (1998), 'Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima', Struct. Optim., 16, 68-75 https://doi.org/10.1007/BF01214002
  9. Svanberg, K. (1987), 'The method of moving asymptotes - a new method for structural optimization', Int. J. Numer. Meth. Eng., 24, 359-373 https://doi.org/10.1002/nme.1620240207
  10. Tanskanen, P. (2002), 'The evolutionary structural optimization method: theoretical aspects', Comput. Method. Appl. M, 191, 5485-5498 https://doi.org/10.1016/S0045-7825(02)00464-4
  11. Xie, Y.M. and Steven, G.P. (1993), 'A simple evolutionary procedure for structural optimization', Comput. Struct., 49, 885-886 https://doi.org/10.1016/0045-7949(93)90035-C
  12. Xie, Y.M. and Steven, G.P. (1997), Evolutionary Structural Optimization. London: Springer
  13. Yang, X.Y., Xie, Y.M., Liu, J.S., Parks, G.T. and Clarkson, P.J. (2003), 'Perimeter control in the bidirectional evolutionary optimization method', Struct. Multidiscip. O., 24, 430-440
  14. Yang, X.Y, Xie, Y.M., Steven, G.P. and Querin, O.M. (1999), 'Bidirectional evolutionary method for stiffness optimization', AIAA J., 37(11), 1483-1488 https://doi.org/10.2514/2.626
  15. Zhou, M. and Rozvany, G.I.N. (2001), 'On the validity of ESO type methods in topology optimization', Struct. Multidiscip. O., 21, 80-83 https://doi.org/10.1007/s001580050170

Cited by

  1. Selection of time step for pseudodynamic testing vol.10, pp.3, 2011, https://doi.org/10.1007/s11803-011-0079-8
  2. Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load vol.34, pp.5, 2010, https://doi.org/10.12989/sem.2010.34.5.581